-
Notifications
You must be signed in to change notification settings - Fork 3
/
RESCAL.py
45 lines (44 loc) · 2.13 KB
/
RESCAL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from Model import *
class RESCAL(Model):
def __init__(self,config):
super(RESCAL,self).__init__(config)
self.ent_embeddings=nn.Embedding(self.config.entTotal,self.config.hidden_size)
self.rel_matrices=nn.Embedding(self.config.relTotal,self.config.hidden_size*self.config.hidden_size)
self.init_weights()
def init_weights(self):
nn.init.xavier_uniform(self.ent_embeddings.weight.data)
nn.init.xavier_uniform(self.rel_matrices.weight.data)
def _calc(self,h,t,r):
return h*torch.matmul(r,t)
def loss_func(self,p_score,n_score):
criterion= nn.MarginRankingLoss(self.config.margin,False).cuda()
y=Variable(torch.Tensor([1])).cuda()
loss=criterion(p_score,n_score,y)
return loss
def forward(self):
pos_h,pos_t,pos_r=self.get_postive_instance()
neg_h,neg_t,neg_r=self.get_negtive_instance()
p_h=self.ent_embeddings(pos_h).view(-1,self.config.hidden_size,1)
p_t=self.ent_embeddings(pos_t).view(-1,self.config.hidden_size,1)
p_r=self.rel_matrices(pos_r).view(-1,self.config.hidden_size,self.config.hidden_size)
n_h=self.ent_embeddings(neg_h).view(-1,self.config.hidden_size,1)
n_t=self.ent_embeddings(neg_t).view(-1,self.config.hidden_size,1)
n_r=self.rel_matrices(neg_r).view(-1,self.config.hidden_size,self.config.hidden_size)
_p_score = self._calc(p_h, p_t, p_r).view(-1, 1, self.config.hidden_size)
_n_score = self._calc(n_h, n_t, n_r).view(-1, 1, self.config.hidden_size)
p_score=torch.sum(torch.mean(_p_score,1,False),1)
n_score=torch.sum(torch.mean(_n_score,1,False),1)
loss=self.loss_func(p_score,n_score)
return loss
def predict(self, predict_h, predict_t, predict_r):
p_h_e=self.ent_embeddings(Variable(torch.from_numpy(predict_h))).view(-1,self.config.hidden_size,1)
p_t_e=self.ent_embeddings(Variable(torch.from_numpy(predict_t))).view(-1,self.config.hidden_size,1)
p_r_e=self.rel_matrices(Variable(torch.from_numpy(predict_r))).view(-1,self.config.hidden_size,self.config.hidden_size)
p_score=-torch.sum(self._calc(p_h_e, p_t_e, p_r_e),1)
return p_score.cpu()