This is a PyTorch implementation of the paper AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition.
Shoufa Chen1*,
Chongjian Ge1*,
Zhan Tong2,
Jiangliu Wang2,3,
Yibing Song2,
Jue Wang2,
Ping Luo1
1The University of Hong Kong, 2Tencent AI Lab, 3The Chinese University of Hong Kong
*denotes equal contribution
- Video code
- Image code
- Tesla V100 (32G): CUDA 10.1 + PyTorch 1.6.0 + torchvision 0.7.0
- timm 0.4.8
- einops
- easydict
See DATASET.md.
Start
# video
OMP_NUM_THREADS=1 python3 -m torch.distributed.launch \
--nproc_per_node=8 --nnodes=8 \
--node_rank=$1 --master_addr=$2 --master_port=22234 \
--use_env main_video.py \
--finetune /path/to/pre_trained/checkpoints \
--output_dir /path/to/output \
--batch_size 16 --epochs 90 --blr 0.1 --weight_decay 0.0 --dist_eval \
--data_path /path/to/SSV2 --data_set SSV2 \
--ffn_adapt
on each of 8 nodes. --master_addr
is set as the ip of the node 0. and --node_rank
is 0, 1, ..., 7 for each node.
# image
python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_image.py \
--batch_size 128 --cls_token \
--finetune /path/to/pre_trained/mae_pretrain_vit_b.pth \
--dist_eval --data_path /path/to/data \
--output_dir /path/to/output \
--drop_path 0.0 --blr 0.1 \
--dataset cifar100 --ffn_adapt
To obtain the pre-trained checkpoint, see PRETRAIN.md.
The project is based on MAE, VideoMAE, timm, and MAM. Thanks for their awesome works.
@article{chen2022adaptformer,
title={AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition},
author={Chen, Shoufa and Ge, Chongjian and Tong, Zhan and Wang, Jiangliu and Song, Yibing and Wang, Jue and Luo, Ping},
journal={arXiv preprint arXiv:2205.13535},
year={2022}
}
This project is under the MIT license. See LICENSE for details.