-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathdata.py
297 lines (269 loc) · 10.8 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Created on 2018/12
# Author: Kaituo XU
"""
Logic:
1. AudioDataLoader generate a minibatch from AudioDataset, the size of this
minibatch is AudioDataLoader's batchsize. For now, we always set
AudioDataLoader's batchsize as 1. The real minibatch size we care about is
set in AudioDataset's __init__(...). So actually, we generate the
information of one minibatch in AudioDataset.
2. After AudioDataLoader getting one minibatch from AudioDataset,
AudioDataLoader calls its collate_fn(batch) to process this minibatch.
Input:
Mixtured WJS0 tr, cv and tt path
Output:
One batch at a time.
Each inputs's shape is B x T
Each targets's shape is B x C x T
"""
import json
import math
import os
import numpy as np
import torch
import torch.utils.data as data
import librosa
class AudioDataset(data.Dataset):
def __init__(self, json_dir, batch_size, sample_rate=8000, segment=4.0, cv_maxlen=8.0):
"""
Args:
json_dir: directory including mix.json, s1.json and s2.json
segment: duration of audio segment, when set to -1, use full audio
xxx_infos is a list and each item is a tuple (wav_file, #samples)
"""
super(AudioDataset, self).__init__()
mix_json = os.path.join(json_dir, 'mix.json')
s1_json = os.path.join(json_dir, 's1.json')
s2_json = os.path.join(json_dir, 's2.json')
with open(mix_json, 'r') as f:
mix_infos = json.load(f)
with open(s1_json, 'r') as f:
s1_infos = json.load(f)
with open(s2_json, 'r') as f:
s2_infos = json.load(f)
# sort it by #samples (impl bucket)
def sort(infos): return sorted(
infos, key=lambda info: int(info[1]), reverse=True)
sorted_mix_infos = sort(mix_infos)
sorted_s1_infos = sort(s1_infos)
sorted_s2_infos = sort(s2_infos)
if segment >= 0.0:
# segment length and count dropped utts
segment_len = int(segment * sample_rate) # 4s * 8000/s = 32000 samples
drop_utt, drop_len = 0, 0
for _, sample in sorted_mix_infos:
if sample < segment_len:
drop_utt += 1
drop_len += sample
print("Drop {} utts({:.2f} h) which is short than {} samples".format(
drop_utt, drop_len/sample_rate/36000, segment_len))
# generate minibach infomations
minibatch = []
start = 0
while True:
num_segments = 0
end = start
part_mix, part_s1, part_s2 = [], [], []
while num_segments < batch_size and end < len(sorted_mix_infos):
utt_len = int(sorted_mix_infos[end][1])
if utt_len >= segment_len: # skip too short utt
num_segments += math.ceil(utt_len / segment_len)
# Ensure num_segments is less than batch_size
if num_segments > batch_size:
# if num_segments of 1st audio > batch_size, skip it
if start == end:
part_mix.append(sorted_mix_infos[end])
part_s1.append(sorted_s1_infos[end])
part_s2.append(sorted_s2_infos[end])
end += 1
break
part_mix.append(sorted_mix_infos[end])
part_s1.append(sorted_s1_infos[end])
part_s2.append(sorted_s2_infos[end])
end += 1
if len(part_mix) > 0:
minibatch.append([part_mix, part_s1, part_s2,
sample_rate, segment_len])
if end == len(sorted_mix_infos):
break
start = end
self.minibatch = minibatch
else: # Load full utterance but not segment
# generate minibach infomations
minibatch = []
start = 0
while True:
end = min(len(sorted_mix_infos), start + batch_size)
# Skip long audio to avoid out-of-memory issue
if int(sorted_mix_infos[start][1]) > cv_maxlen * sample_rate:
start = end
continue
minibatch.append([sorted_mix_infos[start:end],
sorted_s1_infos[start:end],
sorted_s2_infos[start:end],
sample_rate, segment])
if end == len(sorted_mix_infos):
break
start = end
self.minibatch = minibatch
def __getitem__(self, index):
return self.minibatch[index]
def __len__(self):
return len(self.minibatch)
class AudioDataLoader(data.DataLoader):
"""
NOTE: just use batchsize=1 here, so drop_last=True makes no sense here.
"""
def __init__(self, *args, **kwargs):
super(AudioDataLoader, self).__init__(*args, **kwargs)
self.collate_fn = _collate_fn
def _collate_fn(batch):
"""
Args:
batch: list, len(batch) = 1. See AudioDataset.__getitem__()
Returns:
mixtures_pad: B x T, torch.Tensor
ilens : B, torch.Tentor
sources_pad: B x C x T, torch.Tensor
"""
# batch should be located in list
assert len(batch) == 1
mixtures, sources = load_mixtures_and_sources(batch[0])
# get batch of lengths of input sequences
ilens = np.array([mix.shape[0] for mix in mixtures])
# perform padding and convert to tensor
pad_value = 0
mixtures_pad = pad_list([torch.from_numpy(mix).float()
for mix in mixtures], pad_value)
ilens = torch.from_numpy(ilens)
sources_pad = pad_list([torch.from_numpy(s).float()
for s in sources], pad_value)
# N x T x C -> N x C x T
sources_pad = sources_pad.permute((0, 2, 1)).contiguous()
#print('mixtures_pad.shape {}'.format(mixtures_pad.shape))
#print('ilens {}'.format(ilens))
return mixtures_pad, ilens, sources_pad
# Eval data part
from preprocess import preprocess_one_dir
class EvalDataset(data.Dataset):
def __init__(self, mix_dir, mix_json, batch_size, sample_rate=8000):
"""
Args:
mix_dir: directory including mixture wav files
mix_json: json file including mixture wav files
"""
super(EvalDataset, self).__init__()
assert mix_dir != None or mix_json != None
if mix_dir is not None:
# Generate mix.json given mix_dir
preprocess_one_dir(mix_dir, mix_dir, 'mix',
sample_rate=sample_rate)
mix_json = os.path.join(mix_dir, 'mix.json')
with open(mix_json, 'r') as f:
mix_infos = json.load(f)
# sort it by #samples (impl bucket)
def sort(infos): return sorted(
infos, key=lambda info: int(info[1]), reverse=True)
sorted_mix_infos = sort(mix_infos)
# generate minibach infomations
minibatch = []
start = 0
while True:
end = min(len(sorted_mix_infos), start + batch_size)
minibatch.append([sorted_mix_infos[start:end],
sample_rate])
if end == len(sorted_mix_infos):
break
start = end
self.minibatch = minibatch
def __getitem__(self, index):
return self.minibatch[index]
def __len__(self):
return len(self.minibatch)
class EvalDataLoader(data.DataLoader):
"""
NOTE: just use batchsize=1 here, so drop_last=True makes no sense here.
"""
def __init__(self, *args, **kwargs):
super(EvalDataLoader, self).__init__(*args, **kwargs)
self.collate_fn = _collate_fn_eval
def _collate_fn_eval(batch):
"""
Args:
batch: list, len(batch) = 1. See AudioDataset.__getitem__()
Returns:
mixtures_pad: B x T, torch.Tensor
ilens : B, torch.Tentor
filenames: a list contain B strings
"""
# batch should be located in list
assert len(batch) == 1
mixtures, filenames = load_mixtures(batch[0])
# get batch of lengths of input sequences
ilens = np.array([mix.shape[0] for mix in mixtures])
# perform padding and convert to tensor
pad_value = 0
mixtures_pad = pad_list([torch.from_numpy(mix).float()
for mix in mixtures], pad_value)
ilens = torch.from_numpy(ilens)
return mixtures_pad, ilens, filenames
# ------------------------------ utils ------------------------------------
def load_mixtures_and_sources(batch):
"""
Each info include wav path and wav duration.
Returns:
mixtures: a list containing B items, each item is T np.ndarray
sources: a list containing B items, each item is T x C np.ndarray
T varies from item to item.
"""
mixtures, sources = [], []
mix_infos, s1_infos, s2_infos, sample_rate, segment_len = batch
# for each utterance
for mix_info, s1_info, s2_info in zip(mix_infos, s1_infos, s2_infos):
mix_path = mix_info[0]
s1_path = s1_info[0]
s2_path = s2_info[0]
assert mix_info[1] == s1_info[1] and s1_info[1] == s2_info[1]
# read wav file
mix, _ = librosa.load(mix_path, sr=sample_rate)
s1, _ = librosa.load(s1_path, sr=sample_rate)
s2, _ = librosa.load(s2_path, sr=sample_rate)
# merge s1 and s2
s = np.dstack((s1, s2))[0] # T x C, C = 2
utt_len = mix.shape[-1]
if segment_len >= 0:
# segment
for i in range(0, utt_len - segment_len + 1, segment_len):
mixtures.append(mix[i:i+segment_len])
sources.append(s[i:i+segment_len])
if utt_len % segment_len != 0:
mixtures.append(mix[-segment_len:])
sources.append(s[-segment_len:])
else: # full utterance
mixtures.append(mix)
sources.append(s)
return mixtures, sources
def load_mixtures(batch):
"""
Returns:
mixtures: a list containing B items, each item is T np.ndarray
filenames: a list containing B strings
T varies from item to item.
"""
mixtures, filenames = [], []
mix_infos, sample_rate = batch
# for each utterance
for mix_info in mix_infos:
mix_path = mix_info[0]
# read wav file
mix, _ = librosa.load(mix_path, sr=sample_rate)
mixtures.append(mix)
filenames.append(mix_path)
return mixtures, filenames
def pad_list(xs, pad_value):
n_batch = len(xs)
max_len = max(x.size(0) for x in xs)
pad = xs[0].new(n_batch, max_len, * xs[0].size()[1:]).fill_(pad_value)
for i in range(n_batch):
pad[i, :xs[i].size(0)] = xs[i]
return pad