- Overview
- Installation
- Project Structure
- Datasets
- Reproduction
- Usage
- Acknowledgements
- Arguments
- Results
Obtaining real-world images from the perspective of UAVs can be costly. Generative AI, on the other hand, can produce a substantial amount of realistic data with a limited dataset. Therefore, this project will utilize generative AI to generate images of roads and rivers from the viewpoint of UAVs under specified conditions.
We employ two models: GAN (pix2pix) and Diffusion(PITI). The raw data is fed into both models. The Diffusion model utilizes an guided-diffusion pre-trained model for fine-tuning, while the GAN model is trained from scratch. The generated images are evaluated by a Router, which determines the final output by selecting the best result from either the GAN or Diffusion model.
To get started, clone this repository and install the necessary dependencies:
git clone https://github.com/your-username/Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments.git
cd Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments
- Using
pip
andrequirements.txt
pip install -r requirements.txt
- Using
conda
andenvironment.yml
conda env create -f environment.yml
conda activate aicup
Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments/
├── diffusion/
│ ├── preprocess/
│ ├── pretrained_diffusion/
│ ├── preprocess.py
│ ├── test.py
│ └── train.py
├── gan/
│ ├── data/
│ ├── models/
│ ├── options/
│ ├── util/
│ ├── preprocess.py
│ ├── test.py
│ └── train.py
├── router/
│ └── router.py
├── training_dataset/
│ ├── img/
│ └── label_img/
├── testing_dataset/
│ └── label_img/
├── environment.yml
├── README.md
├── requirements.txt
├── run_diffusion.sh
├── run_gan.sh
├── run_reproduce.sh
└── run_router.sh
The training_dataset
and testing_dataset
directories contain the datasets provided by the AI CUP 2024. You can replace these datasets with your own data by organizing them in the following structure:
- Training Dataset
- Testing Dataset
label_img/
: Contains black and white images in .png format.
Note: The images in img/
and label_img/
should have matching filenames (except for the file extensions) and consistent dimensions. Filenames for road data should include RO and filenames for river data should include RI.
One-click execution to reproduce the best results:
bash run_reproduce.sh
The script performs the following steps:
- Uses
gdown
to download the best checkpoints to./checkpoints
gan/preprocess.py
: Preprocess the data for GAN.gan/test.py
: Use GAN generate images.diffusion/preprocess.py
: Preprocess the data for Diffusion.diffusion/test.py
: Use Diffusion generate images.router/router.py
: Use Router selects the final best results.
You can also find the best results and best checkpoints here.
Warning: Executing the scripts below requires approximately 32GB of VRAM. If your hardware does not meet this requirement, you may need to adjust the Arguments accordingly.
One-click execution to train the model and generate images:
bash run_diffusion.sh
The script performs the following steps:
download.py
: Download the pre-trained model.preprocess.py
: Preprocess the data.train.py
: Train the model.test.py
: Generate images.
One-click execution to train the model and generate images:
bash run_gan.sh
The script performs the following steps:
preprocess.py
: Preprocess the data.train.py
: Train the model.test.py
: Generate images.
Select the final images from both GAN and Diffusion models:
bash run_router.sh
The script performs the following steps:
router.py
: Selects the final results.
We extend our gratitude to the developers of pix2pix and PITI for generously sharing their code, which has been invaluable to our work. Additionally, we would like to thank the developers of guided-diffusion for providing the pretrained model.
We also thank AI CUP 2024 for organizing the competition and providing the datasets.
The scripts train.py
and test.py
in the diffusion and gan directory share various configurable arguments. Below are the explanations for some of the key arguments:
Argument | Description | Default Value |
---|---|---|
data_dir | The directory where the training data is stored. This should be a path to the folder containing the training images. | "" |
val_data_dir | The directory where the validation data is stored. This is used to evaluate the model during training. | "" |
model_path | The path where the trained model will be saved. This allows you to specify where to store the model checkpoints. | "" |
encoder_path | The path to the pre-trained encoder model. This is used if the training process requires a pre-trained encoder. | "" |
schedule_sampler | The method for sampling the training data. Default is "uniform", which samples data uniformly. | "uniform" |
lr_anneal_steps | The number of total training steps. | 0 |
lr | The learning rate for the optimizer. Controls the step size at each iteration while moving toward a minimum of the loss function. | 1e-4 |
weight_decay | The weight decay (L2 penalty) for the optimizer. Helps to prevent overfitting by penalizing large weights. | 0.0 |
batch_size | The number of samples processed before the model is updated. | 1 |
microbatch | The size of microbatches. -1 disables microbatches. | -1 |
ema_rate | The rate for exponential moving average (EMA) of model parameters. Helps to smooth out the training process. | 0.9999 |
log_interval | The number of iterations between logging the training status. | 200 |
save_interval | The number of iterations between saving the model checkpoint. | 20000 |
resume_checkpoint | The path to a checkpoint file to resume training from a previous state. Allows you to continue training from where it left off. | "" |
use_fp16 | Boolean indicating whether to use 16-bit floating-point precision. Can reduce memory usage and speed up training on compatible hardware. | False |
fp16_scale_growth | The growth factor for the loss scaling used in 16-bit precision training. | 1e-3 |
super_res | An integer flag to indicate if super-resolution is to be used. | 0 |
sample_c | A parameter controlling the guidance scale during the sampling process. | 1.0 |
sample_respacing | The respacing strategy for sampling. | 100 |
uncond_p | The probability of using an unconditional model during training. | 0.2 |
num_samples | The number of samples to generate. | 1 |
finetune_decoder | Boolean indicating whether to fine-tune the decoder. Allows for further training of the decoder part of the model. | False |
mode | A parameter to specify the mode of operation, such as training, evaluation, etc. | "" |
Argument | Description | Default Value |
---|---|---|
dataroot | Path to images (should have subfolders trainA, trainB, valA, valB, etc). | Required |
name | Name of the experiment. It decides where to store samples and models. | 'experiment_name' |
gpu_ids | GPU ids: e.g., '0', '0,1,2', '0,2'. Use -1 for CPU. | '0' |
checkpoints_dir | Directory where models are saved. | './checkpoints' |
seed | Random seed for reproducibility. | 0 |
model | Chooses which model to use. [cycle_gan | pix2pix |
input_nc | Number of input image channels: 3 for RGB and 1 for grayscale. | 3 |
output_nc | Number of output image channels: 3 for RGB and 1 for grayscale. | 3 |
ngf | Number of generator filters in the last convolution layer. | 64 |
ndf | Number of discriminator filters in the first convolution layer. | 64 |
netD | Discriminator architecture [basic | n_layers |
netG | Generator architecture [resnet_9blocks | resnet_6blocks |
n_layers_D | Number of layers in the discriminator if netD is 'n_layers'. | 3 |
norm | Normalization type [instance | batch |
init_type | Network initialization method [normal | xavier |
init_gain | Scaling factor for normal, xavier, and orthogonal initialization. | 0.02 |
no_dropout | If specified, do not use dropout for the generator. | Action (store_true) |
dataset_mode | Chooses how datasets are loaded [unaligned | aligned |
direction | Direction of the transformation [AtoB | BtoA]. |
serial_batches | If true, takes images in order to make batches, otherwise takes them randomly. | Action (store_true) |
num_threads | Number of threads for loading data. | 4 |
batch_size | Input batch size. | 1 |
load_size | Scale images to this size. | 286 |
crop_size | Crop images to this size. | 256 |
max_dataset_size | Maximum number of samples allowed per dataset. If the dataset directory contains more, only a subset is loaded. | float("inf") |
preprocess | Image preprocessing method [resize_and_crop | crop |
no_flip | If specified, do not flip the images for data augmentation. | Action (store_true) |
display_winsize | Display window size for both visdom and HTML. | 256 |
n_epochs | Number of epochs with the initial learning rate. | 100 |
n_epochs_decay | Number of epochs to linearly decay the learning rate to zero. | 100 |
beta1 | Momentum term of adam optimizer. | 0.5 |
lr | Initial learning rate for adam optimizer. | 0.0002 |
gan_mode | Type of GAN objective [vanilla | lsgan |
pool_size | Size of image buffer that stores previously generated images. | 50 |
lr_policy | Learning rate policy [linear | step |
lr_decay_iters | Number of iterations after which learning rate is multiplied by a gamma. | 50 |
These arguments offer flexibility in training and testing the diffusion model, allowing you to fine-tune the process according to your specific requirements and hardware capabilities.
Below is a table showcasing the results of image generation for different environments:
ID | Method | Generator | Resize | Data Type | Batch Size | LR | Epochs | PUB FID | PRI FID | Note |
---|---|---|---|---|---|---|---|---|---|---|
01 | GAN | U-Net 256 | Bilinear | Mixed | 256 | 2e-4 | 200 | 149.5899 | - | |
02 | GAN | U-Net 256 | Bilinear | Separate | 256 | 2e-4 | 200 | 163.8351 | - | |
03 | GAN | U-Net 256 | Bilinear | Mixed | 256 | 2e-4 | 400 | 133.0080 | - | |
04 | GAN | ResNet 9blocks | Bilinear | Mixed | 64 | 2e-4 | 200 | 267.8923 | - | |
05 | GAN | U-Net 256 | Bilinear | Mixed | 256 | 2e-4 | 400 | 133.7452 | - | Extra |
06 | GAN | U-Net 256 | Bilinear | Mixed | 256 | 2e-4 | 600 | 129.6689 | - | |
07 | GAN | U-Net 256 | Bilinear | Mixed | 256 | 2e-4 | 1000 | 134.3076 | - | |
08 | GAN | U-Net | Bilinear | Mixed | 16 | 2e-4 | 200 | 137.9879 | - | |
09 | GAN | U-Net 512 | Bilinear | Mixed | 16 | 2e-4 | 200 | 141.4001 | - | |
10 | GAN | U-Net | Bilinear | Mixed | 64 | 2e-4 | 600 | 142.0793 | - | |
11 | GAN | U-Net 256 | Bilinear | Mixed | 64 | 2e-4 | 200 | 135.5488 | - | |
12 | GAN | U-Net 256 | Bilinear | Separate | 64 | 2e-4 | 400 | 127.8701 | - | |
13 | GAN | U-Net 256 | Bilinear | Separate | 64 | 2e-4 | 600 | 156.7936 | - | |
14 | GAN | VAE | Bilinear | Mixed | 8 | 2e-4 | 200 | 133.0856 | - | |
15 | GAN | U-Net 256 | Bilinear | Separate | 1 | 2e-4 | 200 | 206.0832 | - | |
16 | Diffusion | SDv1-5 Scribble | Bilinear | Mixed | 8 | 1e-5 | 1e4 step | 186.8134 | - | |
17 | Diffusion | SDv1-5 Softedge | Bilinear | Mixed | 8 | 1e-5 | 1e4 step | 211.2076 | - | |
18 | GAN | U-Net 256 | Bilinear | 12 out | 64 | 2e-4 | 400 | 127.1882 | - | Synthetic |
19 | GAN | U-Net 256 | Bilinear | 18 out | 64 | 2e-4 | 400 | 123.7632 | - | Synthetic |
20 | GAN | U-Net 256 | Bilinear | 19 out | 64 | 2e-4 | 400 | 124.1638 | - | Synthetic |
21 | GAN | U-Net 512 | Bilinear | Separate | 16 | 2e-4 | 400 | 136.8711 | - | |
22 | Diffusion | SDv1-5 Scribble | Bilinear | Mixed | 64 | 1e-5 | 1e4 step | 190.1620 | - | |
23 | Mixed | 19 + 22 | Bilinear | Separate | - | - | - | 144.5344 | - | |
24 | Diffusion | 22 | Bilinear | Mixed | - | - | - | 192.3814 | - | FP32 inference |
25 | Diffusion | SDv1-5 Scribble | Bilinear | Mixed | 64 | 1e-5 | 2e4 step | 200.9103 | - | |
26 | GAN | U-Net 256 | Bilinear | Separate | 256 | 2e-4 | 400 | 130.6916 | - | |
27 | GAN | FSRCNN | Bilinear | 19 out | - | - | - | 153.7523 | - | Denoise filter |
28 | GAN | U-Net 256 | Bilinear | Separate | 256 | 2e-4 | 500 | 134.0649 | - | |
29 | GAN | FSRCNN | Bilinear | 19 out | - | - | - | 127.3791 | - | |
30 | GAN | U-Net 256 | Bilinear | 20 out | 64 | 2e-4 | 400 | 128.4035 | - | Synthetic |
31 | GAN | U-Net 256 | Bilinear | Separate | 64 | 2e-4 | 200 | 135.3882 | - | |
32 | GAN | U-Net 256 | Bilinear | Separate | 64 | 2e-4 | 300 | 134.9906 | - | |
33 | GAN | U-Net 256 | Bilinear | Separate | 64 | 2e-4 | 500 | 120.9798 | 122.2001 | |
34 | GAN | 19 | Bilinear | Separate | - | - | - | 219.0236 | - | Denoise filter |
35 | GAN | U-Net 256 | Bilinear | Separate | 64 | 2e-4 | 550 | 124.6969 | - | |
36 | GAN | U-Net 256/L | Bilinear | Separate | 64 | 2e-4 | 400 | 124.8068 | - | |
37 | GAN | U-Net SA | Bilinear | Separate | 256 | 2e-4 | 600 | 132.8082 | - | |
38 | GAN | U-Net 256 | Bilinear | Separate | 36 | 2e-4 | 500 | 123.1196 | - | |
39 | GAN | U-Net 256/XL | Bilinear | Separate | 32 | 2e-4 | 400 | 116.0613 | 115.7694 | |
40 | GAN | U-Net SA | Bilinear | Separate | 288 | 2e-4 | 500 | 151.7567 | 153.0398 | |
41 | GAN | U-Net 256 | Bilinear | Separate | 144 | 2e-4 | 500 | 123.3888 | 125.5579 | Inception loss |
42 | GAN | 39 | Lanczos | Separate | - | - | - | 117.4499 | 117.1678 | Detail filter |
43 | GAN | U-Net 256/XL | Bilinear | Separate | 32 | 2e-4 | 450 | 131.0206 | 127.2280 | |
44 | GAN | 39 | Lanczos | Separate | - | - | - | 116.4546 | 115.5285 | |
45 | GAN | U-Net 256/XL | Bilinear | Separate | 32 | 2e-4 | 500 | 116.1229 | 117.0757 | |
46 | GAN | 39 | Bicubic | Separate | - | - | - | 116.0382 | 115.2611 | |
47 | Diffusion | PITI | Bicubic | Separate | 4 | 1e-5 | 2e4 step | 118.9399 | 117.7538 | |
48 | Mixed | 47 + 39 | Bicubic | Separate | - | - | - | 106.2478 | 104.2643 | 8MB threshold |
49 | Mixed | 47 + 39 | Bicubic | Separate | - | - | - | 108.2726 | 105.6473 | Maximum size |
50 | Diffusion | 47 | Bicubic | Separate | - | - | - | 108.5719 | 112.4611 | Sample_c 4 |
51 | Diffusion | PITI | Bicubic | Separate | 4 | 1e-5 | 2e4 step | 115.9617 | 117.3084 | Fill image |
52 | Diffusion | 47 | Bicubic | Separate | - | - | - | 109.5812 | 111.4152 | Respacing 500 |