Skip to content

Generative AI for UAV Navigation in Natural Environments. This project utilizes GAN and Diffusion models to generate realistic images of roads and rivers from UAV perspectives.

Notifications You must be signed in to change notification settings

Shengwei-Peng/UAV-GenerativeAI-Navigation-Images

Repository files navigation

Generative AI Navigation Information for UAV Reconnaissance in Natural Environments

Table of Contents

Overview

Obtaining real-world images from the perspective of UAVs can be costly. Generative AI, on the other hand, can produce a substantial amount of realistic data with a limited dataset. Therefore, this project will utilize generative AI to generate images of roads and rivers from the viewpoint of UAVs under specified conditions.

We employ two models: GAN (pix2pix) and Diffusion(PITI). The raw data is fed into both models. The Diffusion model utilizes an guided-diffusion pre-trained model for fine-tuning, while the GAN model is trained from scratch. The generated images are evaluated by a Router, which determines the final output by selecting the best result from either the GAN or Diffusion model.

architecture

Installation

To get started, clone this repository and install the necessary dependencies:

git clone https://github.com/your-username/Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments.git
cd Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments
  • Using pip and requirements.txt
pip install -r requirements.txt
  • Using conda and environment.yml
conda env create -f environment.yml
conda activate aicup

Project Structure

Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments/
├── diffusion/
│   ├── preprocess/
│   ├── pretrained_diffusion/
│   ├── preprocess.py
│   ├── test.py
│   └── train.py
├── gan/
│   ├── data/
│   ├── models/
│   ├── options/
│   ├── util/
│   ├── preprocess.py
│   ├── test.py
│   └── train.py
├── router/
│   └── router.py
├── training_dataset/
│   ├── img/
│   └── label_img/
├── testing_dataset/
│   └── label_img/
├── environment.yml
├── README.md
├── requirements.txt
├── run_diffusion.sh
├── run_gan.sh
├── run_reproduce.sh
└── run_router.sh

Datasets

The training_dataset and testing_dataset directories contain the datasets provided by the AI CUP 2024. You can replace these datasets with your own data by organizing them in the following structure:

  • Training Dataset
    • img/: Contains raw drone images in .jpg format. img
    • label_img/: Contains black and white images in .png format. label_img
  • Testing Dataset
    • label_img/: Contains black and white images in .png format.

Note: The images in img/ and label_img/ should have matching filenames (except for the file extensions) and consistent dimensions. Filenames for road data should include RO and filenames for river data should include RI.

Reproduction

One-click execution to reproduce the best results:

bash run_reproduce.sh

The script performs the following steps:

  • Uses gdown to download the best checkpoints to ./checkpoints
  • gan/preprocess.py: Preprocess the data for GAN.
  • gan/test.py: Use GAN generate images.
  • diffusion/preprocess.py: Preprocess the data for Diffusion.
  • diffusion/test.py: Use Diffusion generate images.
  • router/router.py: Use Router selects the final best results.

You can also find the best results and best checkpoints here.

Usage

Warning: Executing the scripts below requires approximately 32GB of VRAM. If your hardware does not meet this requirement, you may need to adjust the Arguments accordingly.

Step 1. Diffusion

One-click execution to train the model and generate images:

bash run_diffusion.sh

The script performs the following steps:

  • download.py: Download the pre-trained model.
  • preprocess.py: Preprocess the data.
  • train.py: Train the model.
  • test.py: Generate images.

Step 2. GAN

One-click execution to train the model and generate images:

bash run_gan.sh

The script performs the following steps:

  • preprocess.py: Preprocess the data.
  • train.py: Train the model.
  • test.py: Generate images.

Step 3. Router

Select the final images from both GAN and Diffusion models:

bash run_router.sh

The script performs the following steps:

  • router.py: Selects the final results.

Acknowledgement

We extend our gratitude to the developers of pix2pix and PITI for generously sharing their code, which has been invaluable to our work. Additionally, we would like to thank the developers of guided-diffusion for providing the pretrained model.

We also thank AI CUP 2024 for organizing the competition and providing the datasets.

Arguments

The scripts train.py and test.py in the diffusion and gan directory share various configurable arguments. Below are the explanations for some of the key arguments:

diffusion/

Argument Description Default Value
data_dir The directory where the training data is stored. This should be a path to the folder containing the training images. ""
val_data_dir The directory where the validation data is stored. This is used to evaluate the model during training. ""
model_path The path where the trained model will be saved. This allows you to specify where to store the model checkpoints. ""
encoder_path The path to the pre-trained encoder model. This is used if the training process requires a pre-trained encoder. ""
schedule_sampler The method for sampling the training data. Default is "uniform", which samples data uniformly. "uniform"
lr_anneal_steps The number of total training steps. 0
lr The learning rate for the optimizer. Controls the step size at each iteration while moving toward a minimum of the loss function. 1e-4
weight_decay The weight decay (L2 penalty) for the optimizer. Helps to prevent overfitting by penalizing large weights. 0.0
batch_size The number of samples processed before the model is updated. 1
microbatch The size of microbatches. -1 disables microbatches. -1
ema_rate The rate for exponential moving average (EMA) of model parameters. Helps to smooth out the training process. 0.9999
log_interval The number of iterations between logging the training status. 200
save_interval The number of iterations between saving the model checkpoint. 20000
resume_checkpoint The path to a checkpoint file to resume training from a previous state. Allows you to continue training from where it left off. ""
use_fp16 Boolean indicating whether to use 16-bit floating-point precision. Can reduce memory usage and speed up training on compatible hardware. False
fp16_scale_growth The growth factor for the loss scaling used in 16-bit precision training. 1e-3
super_res An integer flag to indicate if super-resolution is to be used. 0
sample_c A parameter controlling the guidance scale during the sampling process. 1.0
sample_respacing The respacing strategy for sampling. 100
uncond_p The probability of using an unconditional model during training. 0.2
num_samples The number of samples to generate. 1
finetune_decoder Boolean indicating whether to fine-tune the decoder. Allows for further training of the decoder part of the model. False
mode A parameter to specify the mode of operation, such as training, evaluation, etc. ""

gan/

Argument Description Default Value
dataroot Path to images (should have subfolders trainA, trainB, valA, valB, etc). Required
name Name of the experiment. It decides where to store samples and models. 'experiment_name'
gpu_ids GPU ids: e.g., '0', '0,1,2', '0,2'. Use -1 for CPU. '0'
checkpoints_dir Directory where models are saved. './checkpoints'
seed Random seed for reproducibility. 0
model Chooses which model to use. [cycle_gan pix2pix
input_nc Number of input image channels: 3 for RGB and 1 for grayscale. 3
output_nc Number of output image channels: 3 for RGB and 1 for grayscale. 3
ngf Number of generator filters in the last convolution layer. 64
ndf Number of discriminator filters in the first convolution layer. 64
netD Discriminator architecture [basic n_layers
netG Generator architecture [resnet_9blocks resnet_6blocks
n_layers_D Number of layers in the discriminator if netD is 'n_layers'. 3
norm Normalization type [instance batch
init_type Network initialization method [normal xavier
init_gain Scaling factor for normal, xavier, and orthogonal initialization. 0.02
no_dropout If specified, do not use dropout for the generator. Action (store_true)
dataset_mode Chooses how datasets are loaded [unaligned aligned
direction Direction of the transformation [AtoB BtoA].
serial_batches If true, takes images in order to make batches, otherwise takes them randomly. Action (store_true)
num_threads Number of threads for loading data. 4
batch_size Input batch size. 1
load_size Scale images to this size. 286
crop_size Crop images to this size. 256
max_dataset_size Maximum number of samples allowed per dataset. If the dataset directory contains more, only a subset is loaded. float("inf")
preprocess Image preprocessing method [resize_and_crop crop
no_flip If specified, do not flip the images for data augmentation. Action (store_true)
display_winsize Display window size for both visdom and HTML. 256
n_epochs Number of epochs with the initial learning rate. 100
n_epochs_decay Number of epochs to linearly decay the learning rate to zero. 100
beta1 Momentum term of adam optimizer. 0.5
lr Initial learning rate for adam optimizer. 0.0002
gan_mode Type of GAN objective [vanilla lsgan
pool_size Size of image buffer that stores previously generated images. 50
lr_policy Learning rate policy [linear step
lr_decay_iters Number of iterations after which learning rate is multiplied by a gamma. 50

These arguments offer flexibility in training and testing the diffusion model, allowing you to fine-tune the process according to your specific requirements and hardware capabilities.

Results

Below is a table showcasing the results of image generation for different environments:

ID Method Generator Resize Data Type Batch Size LR Epochs PUB FID PRI FID Note
01 GAN U-Net 256 Bilinear Mixed 256 2e-4 200 149.5899 -
02 GAN U-Net 256 Bilinear Separate 256 2e-4 200 163.8351 -
03 GAN U-Net 256 Bilinear Mixed 256 2e-4 400 133.0080 -
04 GAN ResNet 9blocks Bilinear Mixed 64 2e-4 200 267.8923 -
05 GAN U-Net 256 Bilinear Mixed 256 2e-4 400 133.7452 - Extra
06 GAN U-Net 256 Bilinear Mixed 256 2e-4 600 129.6689 -
07 GAN U-Net 256 Bilinear Mixed 256 2e-4 1000 134.3076 -
08 GAN U-Net Bilinear Mixed 16 2e-4 200 137.9879 -
09 GAN U-Net 512 Bilinear Mixed 16 2e-4 200 141.4001 -
10 GAN U-Net Bilinear Mixed 64 2e-4 600 142.0793 -
11 GAN U-Net 256 Bilinear Mixed 64 2e-4 200 135.5488 -
12 GAN U-Net 256 Bilinear Separate 64 2e-4 400 127.8701 -
13 GAN U-Net 256 Bilinear Separate 64 2e-4 600 156.7936 -
14 GAN VAE Bilinear Mixed 8 2e-4 200 133.0856 -
15 GAN U-Net 256 Bilinear Separate 1 2e-4 200 206.0832 -
16 Diffusion SDv1-5 Scribble Bilinear Mixed 8 1e-5 1e4 step 186.8134 -
17 Diffusion SDv1-5 Softedge Bilinear Mixed 8 1e-5 1e4 step 211.2076 -
18 GAN U-Net 256 Bilinear 12 out 64 2e-4 400 127.1882 - Synthetic
19 GAN U-Net 256 Bilinear 18 out 64 2e-4 400 123.7632 - Synthetic
20 GAN U-Net 256 Bilinear 19 out 64 2e-4 400 124.1638 - Synthetic
21 GAN U-Net 512 Bilinear Separate 16 2e-4 400 136.8711 -
22 Diffusion SDv1-5 Scribble Bilinear Mixed 64 1e-5 1e4 step 190.1620 -
23 Mixed 19 + 22 Bilinear Separate - - - 144.5344 -
24 Diffusion 22 Bilinear Mixed - - - 192.3814 - FP32 inference
25 Diffusion SDv1-5 Scribble Bilinear Mixed 64 1e-5 2e4 step 200.9103 -
26 GAN U-Net 256 Bilinear Separate 256 2e-4 400 130.6916 -
27 GAN FSRCNN Bilinear 19 out - - - 153.7523 - Denoise filter
28 GAN U-Net 256 Bilinear Separate 256 2e-4 500 134.0649 -
29 GAN FSRCNN Bilinear 19 out - - - 127.3791 -
30 GAN U-Net 256 Bilinear 20 out 64 2e-4 400 128.4035 - Synthetic
31 GAN U-Net 256 Bilinear Separate 64 2e-4 200 135.3882 -
32 GAN U-Net 256 Bilinear Separate 64 2e-4 300 134.9906 -
33 GAN U-Net 256 Bilinear Separate 64 2e-4 500 120.9798 122.2001
34 GAN 19 Bilinear Separate - - - 219.0236 - Denoise filter
35 GAN U-Net 256 Bilinear Separate 64 2e-4 550 124.6969 -
36 GAN U-Net 256/L Bilinear Separate 64 2e-4 400 124.8068 -
37 GAN U-Net SA Bilinear Separate 256 2e-4 600 132.8082 -
38 GAN U-Net 256 Bilinear Separate 36 2e-4 500 123.1196 -
39 GAN U-Net 256/XL Bilinear Separate 32 2e-4 400 116.0613 115.7694
40 GAN U-Net SA Bilinear Separate 288 2e-4 500 151.7567 153.0398
41 GAN U-Net 256 Bilinear Separate 144 2e-4 500 123.3888 125.5579 Inception loss
42 GAN 39 Lanczos Separate - - - 117.4499 117.1678 Detail filter
43 GAN U-Net 256/XL Bilinear Separate 32 2e-4 450 131.0206 127.2280
44 GAN 39 Lanczos Separate - - - 116.4546 115.5285
45 GAN U-Net 256/XL Bilinear Separate 32 2e-4 500 116.1229 117.0757
46 GAN 39 Bicubic Separate - - - 116.0382 115.2611
47 Diffusion PITI Bicubic Separate 4 1e-5 2e4 step 118.9399 117.7538
48 Mixed 47 + 39 Bicubic Separate - - - 106.2478 104.2643 8MB threshold
49 Mixed 47 + 39 Bicubic Separate - - - 108.2726 105.6473 Maximum size
50 Diffusion 47 Bicubic Separate - - - 108.5719 112.4611 Sample_c 4
51 Diffusion PITI Bicubic Separate 4 1e-5 2e4 step 115.9617 117.3084 Fill image
52 Diffusion 47 Bicubic Separate - - - 109.5812 111.4152 Respacing 500

About

Generative AI for UAV Navigation in Natural Environments. This project utilizes GAN and Diffusion models to generate realistic images of roads and rivers from UAV perspectives.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published