Skip to content

Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

License

Notifications You must be signed in to change notification settings

Sharpiless/Yolov5-deepsort-inference

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv5 + DeepSort 用于目标跟踪与计数

🚗🚶‍♂️ 使用 YOLOv5 和 DeepSort 实现车辆与行人实时跟踪与计数

GitHub stars GitHub forks License

最新版本:https://github.com/Sharpiless/YOLOv11-DeepSort


📌 项目简介

本项目将 YOLOv5DeepSort 相结合,实现了对目标的实时跟踪与计数。提供了一个封装的 Detector 类,方便将此功能嵌入到自定义项目中。

🔗 阅读完整博客【小白CV教程】YOLOv5+Deepsort实现车辆行人的检测、追踪和计数


🚀 核心功能

  • 目标跟踪:实时跟踪车辆与行人。
  • 计数功能:轻松统计视频流中的车辆或行人数。
  • 封装式接口Detector 类封装了检测与跟踪逻辑,便于集成。
  • 高度自定义:支持训练自己的 YOLOv5 模型并无缝接入框架。

🔧 使用说明

安装依赖

pip install -r requirements.txt

确保安装了 requirements.txt 文件中列出的所有依赖。

运行 Demo

python demo.py

🛠️ 开发说明

YOLOv5 检测器

class Detector(baseDet):

    def __init__(self):
        super(Detector, self).__init__()
        self.init_model()
        self.build_config()

    def init_model(self):

        self.weights = 'weights/yolov5m.pt'
        self.device = '0' if torch.cuda.is_available() else 'cpu'
        self.device = select_device(self.device)
        model = attempt_load(self.weights, map_location=self.device)
        model.to(self.device).eval()
        model.half()
        # torch.save(model, 'test.pt')
        self.m = model
        self.names = model.module.names if hasattr(
            model, 'module') else model.names

    def preprocess(self, img):

        img0 = img.copy()
        img = letterbox(img, new_shape=self.img_size)[0]
        img = img[:, :, ::-1].transpose(2, 0, 1)
        img = np.ascontiguousarray(img)
        img = torch.from_numpy(img).to(self.device)
        img = img.half()  # 半精度
        img /= 255.0  # 图像归一化
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        return img0, img

    def detect(self, im):

        im0, img = self.preprocess(im)

        pred = self.m(img, augment=False)[0]
        pred = pred.float()
        pred = non_max_suppression(pred, self.threshold, 0.4)

        pred_boxes = []
        for det in pred:

            if det is not None and len(det):
                det[:, :4] = scale_coords(
                    img.shape[2:], det[:, :4], im0.shape).round()

                for *x, conf, cls_id in det:
                    lbl = self.names[int(cls_id)]
                    if not lbl in ['person', 'car', 'truck']:
                        continue
                    x1, y1 = int(x[0]), int(x[1])
                    x2, y2 = int(x[2]), int(x[3])
                    pred_boxes.append(
                        (x1, y1, x2, y2, lbl, conf))

        return im, pred_boxes
  • 调用 self.detect() 方法返回图像和预测结果

DeepSort 追踪器

deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                    max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                    nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                    max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
                    use_cuda=True)
  • 调用 self.update() 方法更新追踪结果

📊 训练自己的模型

如果需要训练自定义的 YOLOv5 模型,请参考以下教程:
【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)

训练完成后,将模型权重文件放置于 weights 文件夹中。


📦 API 调用

初始化检测器

from AIDetector_pytorch import Detector

det = Detector()

调用检测接口

func_status = {}
func_status['headpose'] = None

result = det.feedCap(im, func_status)
  • im: 输入的 BGR 图像。
  • result['frame']: 检测结果的可视化图像。

✨ 可视化效果

效果图


📚 联系作者


Star History Chart

💡 许可证

本项目遵循 GNU General Public License v3.0 协议。
标明目标检测部分来源https://github.com/ultralytics/yolov5

About

Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages