This is a pytorch implementation of our research. Please refer to our CVPR 2017 paper for details:
Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring [paper] [supplementary] [slide]
If you find our work useful in your research or publication, please cite our work:
@InProceedings{Nah_2017_CVPR,
author = {Nah, Seungjun and Kim, Tae Hyun and Lee, Kyoung Mu},
title = {Deep Multi-Scale Convolutional Neural Network for Dynamic Scene Deblurring},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}
Original Torch7 implementaion is available here.
- python 3 (tested with anaconda3)
- PyTorch 1.6
- tqdm
- imageio
- scikit-image
- numpy
- matplotlib
- readline
Please refer to this issue for the versions.
- Preparing dataset
Before running the code, put the datasets on a desired directory. By default, the data root is set as '~/Research/dataset'
See: src/option.py
group_data.add_argument('--data_root', type=str, default='~/Research/dataset', help='dataset root location')
Put your dataset under args.data_root
.
The dataset location should be like:
# GOPRO_Large dataset
~/Research/dataset/GOPRO_Large/train/GOPR0372_07_00/blur_gamma/....
# REDS dataset
~/Research/dataset/REDS/train/train_blur/000/...
- Example commands
# single GPU training
python main.py --n_GPUs 1 --batch_size 8 # save the results in default experiment/YYYY-MM-DD_hh-mm-ss
python main.py --n_GPUs 1 --batch_size 8 --save_dir GOPRO_L1 # save the results in experiment/GOPRO_L1
# adversarial training
python main.py --n_GPUs 1 --batch_size 8 --loss 1*L1+1*ADV
python main.py --n_GPUs 1 --batch_size 8 --loss 1*L1+3*ADV
python main.py --n_GPUs 1 --batch_size 8 --loss 1*L1+0.1*ADV
# train with GOPRO_Large dataset
python main.py --n_GPUs 1 --batch_size 8 --dataset GOPRO_Large
# train with REDS dataset (always set --do_test false)
python main.py --n_GPUs 1 --batch_size 8 --dataset REDS --do_test false --milestones 100 150 180 --end_epoch 200
# save part of the evaluation results (default)
python main.py --n_GPUs 1 --batch_size 8 --dataset GOPRO_Large --save_results part
# save no evaluation results (faster at test time)
python main.py --n_GPUs 1 --batch_size 8 --dataset GOPRO_Large --save_results none
# save all of the evaluation results
python main.py --n_GPUs 1 --batch_size 8 --dataset GOPRO_Large --save_results all
# multi-GPU training (DataParallel)
python main.py --n_GPUs 2 --batch_size 16
# multi-GPU training (DistributedDataParallel), recommended for the best speed
# single command version (do not set ranks)
python launch.py --n_GPUs 2 main.py --batch_size 16
# multi-command version (type in independent shells with the corresponding ranks, useful for debugging)
python main.py --batch_size 16 --distributed true --n_GPUs 2 --rank 0 # shell 0
python main.py --batch_size 16 --distributed true --n_GPUs 2 --rank 1 # shell 1
# single precision inference (default)
python launch.py --n_GPUs 2 main.py --batch_size 16 --precision single
# half precision inference (faster and requires less memory)
python launch.py --n_GPUs 2 main.py --batch_size 16 --precision half
# half precision inference with AMP
python launch.py --n_GPUs 2 main.py --batch_size 16 --amp true
# optional mixed-precision training
# mixed precision training may result in different accuracy
python main.py --n_GPUs 1 --batch_size 16 --amp true
python main.py --n_GPUs 2 --batch_size 16 --amp true
python launch.py --n_GPUs 2 main.py --batch_size 16 --amp true
# Advanced usage examples
# using launch.py is recommended for the best speed and convenience
python launch.py --n_GPUs 4 main.py --dataset GOPRO_Large
python launch.py --n_GPUs 4 main.py --dataset GOPRO_Large --milestones 500 750 900 --end_epoch 1000 --save_results none
python launch.py --n_GPUs 4 main.py --dataset GOPRO_Large --milestones 500 750 900 --end_epoch 1000 --save_results part
python launch.py --n_GPUs 4 main.py --dataset GOPRO_Large --milestones 500 750 900 --end_epoch 1000 --save_results all
python launch.py --n_GPUs 4 main.py --dataset GOPRO_Large --milestones 500 750 900 --end_epoch 1000 --save_results all --amp true
python launch.py --n_GPUs 4 main.py --dataset REDS --milestones 100 150 180 --end_epoch 200 --save_results all --do_test false
python launch.py --n_GPUs 4 main.py --dataset REDS --milestones 100 150 180 --end_epoch 200 --save_results all --do_test false --do_validate false
# Commands used to generate the below results
python launch.py --n_GPUs 2 main.py --dataset GOPRO_Large --milestones 500 750 900 --end_epoch 1000
python launch.py --n_GPUs 4 main.py --dataset REDS --milestones 100 150 180 --end_epoch 200 --do_test false
For more advanced usage, please take a look at src/option.py
- Single-precision training results
Dataset | GOPRO_Large | REDS |
---|---|---|
PSNR | 30.40 | 32.89 |
SSIM | 0.9018 | 0.9207 |
Download | link | link |
- Mixed-precision training results
Dataset | GOPRO_Large | REDS | REDS (GOPRO_Large pretrained) |
---|---|---|---|
PSNR | 30.42 | 32.95 | 33.13 |
SSIM | 0.9021 | 0.9209 | 0.9237 |
Download | link | link | link |
Mixed-precision training uses less memory and is faster, especially on NVIDIA Turing-generation GPUs. Loss scaling technique is adopted to cope with the narrow representation range of fp16. This could improve/degrade accuracy.
- Inference speed on RTX 2080 Ti (resolution: 1280x720)
Inference in half precision has negligible effect on accuracy while it requires less memory and computation time.
type | FP32 | FP16 |
---|---|---|
fps | 1.06 | 3.03 |
time (s) | 0.943 | 0.330 |
To use the trained models, download files, unzip, and put them under DeepDeblur-PyTorch/experiment
python main.py --save_dir SAVE_DIR --demo true --demo_input_dir INPUT_DIR_NAME --demo_output_dir OUTPUT_DIR_NAME
# SAVE_DIR is the experiment directory where the parameters are saved (GOPRO_L1, REDS_L1)
# SAVE_DIR is relative to DeepDeblur-PyTorch/experiment
# demo_output_dir is by default SAVE_DIR/results
# image dataloader looks into DEMO_INPUT_DIR, recursively
# example
# single GPU (GOPRO_Large, single precision)
python main.py --save_dir GOPRO_L1 --demo true --demo_input_dir ~/Research/dataset/GOPRO_Large/test/GOPR0384_11_00/blur_gamma
# single GPU (GOPRO_Large, amp-trained model, half precision)
python main.py --save_dir GOPRO_L1_amp --demo true --demo_input_dir ~/Research/dataset/GOPRO_Large/test/GOPR0384_11_00/blur_gamma --precision half
# multi-GPU (REDS, single precision)
python launch.py --n_GPUs 2 main.py --save_dir REDS_L1 --demo true --demo_input_dir ~/Research/dataset/REDS/test/test_blur --demo_output_dir OUTPUT_DIR_NAME
# multi-GPU (REDS, half precision)
python launch.py --n_GPUs 2 main.py --save_dir REDS_L1 --demo true --demo_input_dir ~/Research/dataset/REDS/test/test_blur --demo_output_dir OUTPUT_DIR_NAME --precision half
The default options are different from the original paper.
- RGB range is [0, 255]
- L1 loss (without adversarial loss. Usage possible. See above examples)
- Batch size increased to 16.
- Distributed multi-gpu training is recommended.
- Mixed-precision training enabled. Accuracy not guaranteed.
- SSIM function changed from MATLAB to python
There are many different SSIM implementations.
In this repository, SSIM metric is based on the following function:
from skimage.metrics import structural_similarity
ssim = structural_similarity(ref_im, res_im, multichannel=True, gaussian_weights=True, use_sample_covariance=False)
SSIM
class in src/loss/metric.py supports PyTorch.
SSIM function in MATLAB is not correct if applied to RGB images. See this issue for details.