This repository has been archived by the owner on May 19, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathconvert.py
124 lines (107 loc) · 4.83 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import torch
import numpy as np
import torch.nn as nn
import tensorflow as tf
from resnet import get_resnet, name_to_params
parser = argparse.ArgumentParser(description='SimCLR converter')
parser.add_argument('tf_path', type=str, help='path of the input tensorflow file (ex: model.ckpt-250228)')
parser.add_argument('--ema', action='store_true')
parser.add_argument('--supervised', action='store_true')
args = parser.parse_args()
def main():
use_ema_model = args.ema
prefix = ('ema_model/' if use_ema_model else '') + 'base_model/'
head_prefix = ('ema_model/' if use_ema_model else '') + 'head_contrastive/'
# 1. read tensorflow weight into a python dict
vars_list = []
contrastive_vars = []
for v in tf.train.list_variables(args.tf_path):
if v[0].startswith(prefix) and not v[0].endswith('/Momentum'):
vars_list.append(v[0])
elif v[0] in {'head_supervised/linear_layer/dense/bias', 'head_supervised/linear_layer/dense/kernel'}:
vars_list.append(v[0])
elif v[0].startswith(head_prefix) and not v[0].endswith('/Momentum'):
contrastive_vars.append(v[0])
sd = {}
ckpt_reader = tf.train.load_checkpoint(args.tf_path)
for v in vars_list:
sd[v] = ckpt_reader.get_tensor(v)
split_idx = 2 if use_ema_model else 1
# 2. convert the state_dict to PyTorch format
conv_keys = [k for k in sd.keys() if k.split('/')[split_idx].split('_')[0] == 'conv2d']
conv_idx = []
for k in conv_keys:
mid = k.split('/')[split_idx]
if len(mid) == 6:
conv_idx.append(0)
else:
conv_idx.append(int(mid[7:]))
arg_idx = np.argsort(conv_idx)
conv_keys = [conv_keys[idx] for idx in arg_idx]
bn_keys = list(set([k.split('/')[split_idx] for k in sd.keys()
if k.split('/')[split_idx].split('_')[0] == 'batch']))
bn_idx = []
for k in bn_keys:
if len(k.split('_')) == 2:
bn_idx.append(0)
else:
bn_idx.append(int(k.split('_')[2]))
arg_idx = np.argsort(bn_idx)
bn_keys = [bn_keys[idx] for idx in arg_idx]
depth, width, sk_ratio = name_to_params(args.tf_path)
model, head = get_resnet(depth, width, sk_ratio)
conv_op = []
bn_op = []
for m in model.modules():
if isinstance(m, nn.Conv2d):
conv_op.append(m)
elif isinstance(m, nn.BatchNorm2d):
bn_op.append(m)
assert len(vars_list) == (len(conv_op) + len(bn_op) * 4 + 2) # 2 for fc
for i_conv in range(len(conv_keys)):
m = conv_op[i_conv]
w = torch.from_numpy(sd[conv_keys[i_conv]]).permute(3, 2, 0, 1)
assert w.shape == m.weight.shape, f'size mismatch {w.shape} <> {m.weight.shape}'
m.weight.data = w
for i_bn in range(len(bn_keys)):
m = bn_op[i_bn]
gamma = torch.from_numpy(sd[prefix + bn_keys[i_bn] + '/gamma'])
assert m.weight.shape == gamma.shape, f'size mismatch {gamma.shape} <> {m.weight.shape}'
m.weight.data = gamma
m.bias.data = torch.from_numpy(sd[prefix + bn_keys[i_bn] + '/beta'])
m.running_mean = torch.from_numpy(sd[prefix + bn_keys[i_bn] + '/moving_mean'])
m.running_var = torch.from_numpy(sd[prefix + bn_keys[i_bn] + '/moving_variance'])
w = torch.from_numpy(sd['head_supervised/linear_layer/dense/kernel']).t()
assert model.fc.weight.shape == w.shape
model.fc.weight.data = w
b = torch.from_numpy(sd['head_supervised/linear_layer/dense/bias'])
assert model.fc.bias.shape == b.shape
model.fc.bias.data = b
if args.supervised:
save_location = f'r{depth}_{width}x_sk{1 if sk_ratio != 0 else 0}{"_ema" if use_ema_model else ""}.pth'
torch.save({'resnet': model.state_dict(), 'head': head.state_dict()}, save_location)
return
sd = {}
for v in contrastive_vars:
sd[v] = ckpt_reader.get_tensor(v)
linear_op = []
bn_op = []
for m in head.modules():
if isinstance(m, nn.Linear):
linear_op.append(m)
elif isinstance(m, nn.BatchNorm1d):
bn_op.append(m)
for i, (l, m) in enumerate(zip(linear_op, bn_op)):
l.weight.data = torch.from_numpy(sd[f'{head_prefix}nl_{i}/dense/kernel']).t()
common_prefix = f'{head_prefix}nl_{i}/batch_normalization/'
m.weight.data = torch.from_numpy(sd[f'{common_prefix}gamma'])
if i != 2:
m.bias.data = torch.from_numpy(sd[f'{common_prefix}beta'])
m.running_mean = torch.from_numpy(sd[f'{common_prefix}moving_mean'])
m.running_var = torch.from_numpy(sd[f'{common_prefix}moving_variance'])
# 3. dump the PyTorch weights.
save_location = f'r{depth}_{width}x_sk{1 if sk_ratio != 0 else 0}{"_ema" if use_ema_model else ""}.pth'
torch.save({'resnet': model.state_dict(), 'head': head.state_dict()}, save_location)
if __name__ == '__main__':
main()