-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathekf.py
371 lines (302 loc) · 15.5 KB
/
ekf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""
EKF propagation and update functions
* ekf_propagate()
* ekf_update()
"""
from __future__ import absolute_import, division, print_function
import pdb, os, time, sys
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch import matmul as mm
from liegroups.torch import skew3_b, exp_SO3_b
class EKFParams:
def __init__(self):
self.init_covar_diag_sqrt = np.array([0, 0, 0, 0, 0, 0, # C, r
1e-2, 1e-2, 1e-2, # v
1e-4, 1e-4, 1e-4, # g
1e-8, 1e-8, 1e-8, # bw
1e-1, 1e-1, 1e-1]) # ba
self.init_covar_diag_eps = 1e-12
# self.exclude_resume_weights = ["imu_noise_covar_weights", "init_covar_diag_sqrt"]
self.imu_noise_covar_diag = np.array([1e-7, # w
1e-7, # bw
1e-2, # a
1e-3]) # ba
self.imu_noise_covar_beta = 4
self.imu_noise_covar_gamma = 1
self.vis_fixed_covar = np.array([1e0, 1e0, 1e0, 1e0, 1e0, 1e0])
self.vis_covar_init_guess = 1e1
self.vis_covar_beta = 3
self.vis_covar_gamma = 1
# account for trans_scale_factor
trans_scale_factor_2 = 5.4 * 5.4
self.vis_fixed_covar /= trans_scale_factor_2
self.vis_covar_init_guess /= trans_scale_factor_2
# error scale for covar loss, not really used,
# but must be 1.0 for self.gaussian_pdf_loss = False
self.vis_covar_scale = 1.0
def proc_vis_covar(par, vis_std, vis_covar_use_fixed, return_diag, naive_vis_covar):
"""[Processing visual measurement covariances]
Args:
par ([dict]): [the parameters used for defining vis_std]
vis_std ([torch.Tensor]): [(2B, 6)]
(1) naive_vis_covar is True: The standard error of visual measurements
(2) naive_vis_covar is False: The metric used in 10**(3*tanh(x))
vis_covar_use_fixed ([bool]): [Whether use predefined or CNN predicted vis_std/covar]
Returns:
[vis_covar]: [The processed visual covariances]
"""
vis_covar_scale = torch.ones(6, device=vis_std.device)
vis_covar_scale[0:3] = vis_covar_scale[0:3] * par.vis_covar_scale
if vis_covar_use_fixed:
vis_covar_diag = torch.tensor(par.vis_fixed_covar, dtype=torch.float32, device=vis_std.device)
vis_covar_diag = vis_covar_diag * vis_covar_scale
vis_covar_diag = vis_covar_diag.repeat(vis_std.shape[0], 1)
elif naive_vis_covar:
vis_covar_diag = par.vis_covar_init_guess * (vis_std ** 2)
else:
vis_covar_diag = 10 ** (par.vis_covar_beta * torch.tanh(par.vis_covar_gamma * vis_std))
vis_covar_diag = par.vis_covar_init_guess * vis_covar_diag
vis_covar_diag = vis_covar_diag / vis_covar_scale.view(1, 6)
if return_diag:
return vis_covar_diag
vis_covar = torch.diag_embed(vis_covar_diag)
return vis_covar
class EKFModel(torch.nn.Module):
"""[summary]
"""
def __init__(self, train_init_covar, train_imu_noise_covar, vis_covar_use_fixed, trans_scale_factor, naive_vis_covar):
"""Pre-define noise covariances etc.
"""
super(EKFModel, self).__init__()
self.par = EKFParams()
self.vis_covar_use_fixed = vis_covar_use_fixed
self.trans_scale_factor = trans_scale_factor
self.naive_vis_covar = naive_vis_covar
## IMU initial covariance
self.init_covar_diag_sqrt = torch.nn.Parameter(torch.tensor(self.par.init_covar_diag_sqrt, dtype=torch.float32))
if train_init_covar:
self.init_covar_diag_sqrt.requires_grad = True
else:
self.init_covar_diag_sqrt.requires_grad = False
## IMU noise covariance
self.imu_noise_covar_weights = torch.nn.Linear(1, 4, bias=False)
if train_imu_noise_covar:
for p in self.imu_noise_covar_weights.parameters():
p.requires_grad = True
self.imu_noise_covar_weights.weight.data /= 10
else:
for p in self.imu_noise_covar_weights.parameters():
p.requires_grad = False
self.imu_noise_covar_weights.weight.data.zero_()
def get_par(self):
return self.par
def get_imu_noise_covar(self):
covar = 10 ** (self.par.imu_noise_covar_beta * torch.tanh(self.par.imu_noise_covar_gamma * self.imu_noise_covar_weights(
torch.ones(1, device=self.imu_noise_covar_weights.weight.device))))
imu_noise_covar_diag = torch.tensor(self.par.imu_noise_covar_diag, dtype=torch.float32,device=self.imu_noise_covar_weights.weight.device).repeat_interleave(3)
imu_noise_covar_diag = imu_noise_covar_diag * torch.stack([
covar[0], covar[0], covar[0],
covar[1], covar[1], covar[1],
covar[2], covar[2], covar[2],
covar[3], covar[3], covar[3]])
return torch.diag(imu_noise_covar_diag)
def force_symmetrical(self, M):
M_upper = torch.triu(M)
return M_upper + M_upper.transpose(-2, -1) * \
(1 - torch.eye(M_upper.size(-2), M_upper.size(-1), device=M.device).repeat(M_upper.size(0), 1, 1))
def propagate(self,
dts,
wa_xyzs,
R_ckbts,
g_k,
bw_k,
ba_k,
imu_noise_covar,
imu_erorr_covar):
"""EKF Propagation
"""
batch_size = dts.shape[0]
assert dts.shape[1] + 1 == wa_xyzs.shape[1] == R_ckbts.shape[1]
for idx in range(dts.shape[1]):
dt = dts[:, idx]
gyro_meas = wa_xyzs[:, idx, :3]
accel_meas = wa_xyzs[:, idx, 3:]
R_ckbt = R_ckbts[:, idx, :, :]
R_ckbt_transpose = R_ckbt.transpose(-2, -1)
dt2 = dt * dt
w = gyro_meas - bw_k
w_skewed = skew3_b(w.unsqueeze(-1))
a = accel_meas - mm(R_ckbt_transpose, g_k.unsqueeze(-1)).squeeze(-1) - ba_k
I3 = torch.eye(3, 3, device=dts.device).repeat(batch_size, 1, 1)
exp_int_w = exp_SO3_b((dt.unsqueeze(-1) * w).unsqueeze(-1))
exp_int_w_transpose = exp_int_w.transpose(-2, -1)
# propagate uncertainty, 2nd order
F = torch.zeros(batch_size, 18, 18, device=dts.device)
F[:, 0:3, 0:3] = -w_skewed
F[:, 0:3, 12:15] = -I3
F[:, 3:6, 6:9] = I3
F[:, 6:9, 0:3] = -mm(R_ckbt, skew3_b(mm(R_ckbt_transpose, g_k.unsqueeze(-1)) + a.unsqueeze(-1)))
F[:, 6:9, 9:12] = -I3
F[:, 6:9, 15:18] = -R_ckbt
G = torch.zeros(batch_size, 18, 12, device=dts.device)
G[:, 0:3, 0:3] = -I3
G[:, 6:9, 6:9] = -R_ckbt
G[:, 12:15, 3:6] = I3
G[:, 15:18, 9:12] = I3
# dt, dt2 from [8] to [8, 1, 1]
dt = dt.unsqueeze(-1).unsqueeze(-1)
dt2 = dt2.unsqueeze(-1).unsqueeze(-1)
Phi = torch.eye(18, 18, device=dts.device).repeat(batch_size, 1, 1)
Phi += F * dt + 0.5 * mm(F, F) * dt2
# This part is approx -> Can be removed
Phi[:, 0:3, 0:3] = exp_int_w_transpose
Q = mm(mm(mm(mm(Phi, G), imu_noise_covar.repeat(batch_size, 1, 1)),
G.transpose(-2, -1)), Phi.transpose(-2, -1)) * dt
imu_erorr_covar = mm(mm(Phi, imu_erorr_covar), Phi.transpose(-2, -1)) + Q
imu_erorr_covar = self.force_symmetrical(imu_erorr_covar)
return imu_erorr_covar
def update(self,
preimu_rot,
preimu_trans,
imu_error_covar,
vis_rot,
vis_trans,
vis_covar,
H0, H1,
v_ck, g_ck):
"""EKF update
"""
# preimu_rot and vis_rot are phi_c (so3 of R)
residual_rot = vis_rot - preimu_rot
residual_trans = vis_trans - preimu_trans
residual = torch.cat([residual_rot, residual_trans], dim=1)
batch_size = vis_rot.shape[0]
I3 = torch.eye(3, 3, device=vis_rot.device).repeat(batch_size, 1, 1)
H = torch.zeros(batch_size, 6, 18, device=vis_rot.device)
H[:, 0:3, 0:3] = H0
H[:, 3:6, 0:3] = H1
H[:, 3:6, 3:6] = I3
H_transpose = H.transpose(-2, -1)
S = mm(mm(H, imu_error_covar), H_transpose) + vis_covar
K = mm(mm(imu_error_covar, H_transpose), S.inverse()) # [B, 18, 6]
est_error = mm(K, residual.unsqueeze(-1))
# I18 = torch.eye(18, 18, device=vis_rot.device).repeat(batch_size, 1, 1)
# est_covar = mm(I18 - mm(K, H), imu_error_covar)
phi_ckbkp1_error = est_error[:, 0:3]
p_ckbkp1_error = est_error[:, 3:6]
v_ck_error = est_error[:, 6:9]
g_ck_error = est_error[:, 9:12]
# bw_bt_error = est_error[:, 12:15]
# ba_bt_error = est_error[:, 15:18]
ekf_phi_c = preimu_rot + mm(H0, phi_ckbkp1_error).squeeze(-1)
ekf_t_c = preimu_trans + mm(H1, phi_ckbkp1_error).squeeze(-1) + p_ckbkp1_error.squeeze(-1)
ekf_v_ck = v_ck + v_ck_error.squeeze(-1)
ekf_g_ck = g_ck + g_ck_error.squeeze(-1)
return ekf_phi_c, ekf_t_c, ekf_v_ck, ekf_g_ck
def forward(self,
dts_full,
wa_xyz_full,
R_ckbt_full,
velocities_full,
gravities_full,
H0_full,
H1_full,
preimu_rot_full,
preimu_trans_full,
vis_rot_full,
vis_trans_full,
vis_rot_std_full,
vis_trans_std_full):
"""EKF propagation and update
Args: All list has length 2: from 0 to -1, from 1 to 0 (Ending with _full), [(Size of each element),..]
dts: Raw delta_time data, [(B, 11), (B, 11)]
wa_xyz: Raw wa_xyz data, [(B, 12, 6), (B, 12, 6)]
R_ckbt: Preintegrated R_ckbt, [(B, 12, 3, 3), (B, 12, 3, 3)]
velocities: CNN predicted velocities, [(B, 3), (B, 3)]
gravities: CNN predicted gravities at frame -1 and 0, [(B, 3), (B, 3)]
H0: H[0:3, 0:3] in EKF update, [(B, 3, 3), (B, 3, 3)]
H1: H[3:6, 0:3] in EKF update, [(B, 3, 3), (B, 3, 3)],
preimu_rot: IMU preintegrated rotations (phi), [(B, 3), (B, 3)]
preimu_trans: IMU preintegrated translations, [(B, 3), (B, 3)]
vis_rot: Camera predicted rotations (phi), [(B, 3), (B, 3)]
vis_trans: Camera predicted translations, [(B, 3), (B, 3)]
vis_rot_std: Camera predicted rotation std (phi), [(B, 3), (B, 3)]
vis_trans_std: Camera predicted translation std, [(B, 3), (B, 3)]
"""
dts = torch.cat(dts_full, dim=0) # (2B, 11)
wa_xyzs = torch.cat(wa_xyz_full, dim=0) # (2B, 12, 6)
R_ckbts = torch.cat(R_ckbt_full, dim=0) # (2B, 12, 3, 3)
v_k = torch.cat(velocities_full, dim=0) # (2B, 3)
g_k = torch.cat(gravities_full, dim=0) # (2B, 3)
H0 = torch.cat(H0_full, dim=0) # (2B, 3, 3)
H1 = torch.cat(H1_full, dim=0) # (2B, 3, 3)
preimu_rot = torch.cat(preimu_rot_full, dim=0) # (2B, 3)
preimu_trans = torch.cat(preimu_trans_full, dim=0) # (2B, 3)
vis_rot = torch.cat(vis_rot_full, dim=0) # (2B, 3)
vis_trans = torch.cat(vis_trans_full, dim=0) # (2B, 3)
vis_rot_std = torch.cat(vis_rot_std_full, dim=0) # (2B, 3)
vis_trans_std = torch.cat(vis_trans_std_full, dim=0) # (2B, 3)
vis_std = torch.cat([vis_rot_std, vis_trans_std], dim=1) # (2B, 6)
## Process vis_meas and vis_covar predicted from camera images using CNN
vis_covar = proc_vis_covar(self.par, vis_std, vis_covar_use_fixed=self.vis_covar_use_fixed, return_diag=False, naive_vis_covar=self.naive_vis_covar)
## NOTE: All translations in EKF are at original scale, rather than /=5.4!!
# k * N(mean, cov) = N(k * mean, k^2 * cov)
vis_trans = vis_trans * self.trans_scale_factor # Account for scale factor
vis_covar = vis_covar * (self.trans_scale_factor ** 2)
## Initialize the initialial covariances and biases# ??? Set the covar of R, p to zero using U ??? (In deep_ekf_vio)
# -> Need to specify imu_noise_covar and prev_covar here!!!
ba_k = 0.
bw_k = 0.
imu_noise_covar = self.get_imu_noise_covar()
batch_size = dts.shape[0]
prev_covar = torch.diag(self.init_covar_diag_sqrt * self.init_covar_diag_sqrt + self.par.init_covar_diag_eps).repeat(batch_size, 1, 1)
U = torch.diag(torch.tensor([0.] * 6 + [1.] * 12, device=dts.device)).repeat(batch_size, 1, 1)
imu_erorr_covar = torch.matmul(torch.matmul(U, prev_covar), U.transpose(-2, -1))
# EKF propagation
imu_error_covar = self.propagate(
dts = dts,
wa_xyzs = wa_xyzs,
R_ckbts = R_ckbts,
g_k = g_k,
bw_k = bw_k, ba_k = ba_k,
imu_noise_covar = imu_noise_covar,
imu_erorr_covar = imu_erorr_covar
)
# EKF update
ekf_phi_c_full, ekf_t_c_full, ekf_v_ck_full, ekf_g_ck_full = self.update(
preimu_rot = preimu_rot,
preimu_trans = preimu_trans,
imu_error_covar = imu_error_covar,
vis_rot = vis_rot,
vis_trans = vis_trans,
vis_covar = vis_covar,
H0 = H0, H1 = H1,
v_ck = v_k, g_ck = g_k
)
# Separate *_full into [from 0 to -1, from 1 to 0]
assert batch_size % 2 == 0
half_size = int(batch_size / 2)
ekf_phi_c = [ekf_phi_c_full[ : half_size],
ekf_phi_c_full[half_size : ]]
ekf_t_c = [ekf_t_c_full[ : half_size],
ekf_t_c_full[half_size : ]]
ekf_v_ck = [ekf_v_ck_full[ : half_size],
ekf_v_ck_full[half_size : ]]
ekf_g_ck = [ekf_g_ck_full[ : half_size],
ekf_g_ck_full[half_size : ]]
return ekf_phi_c, ekf_t_c, ekf_v_ck, ekf_g_ck, vis_covar, imu_error_covar
def get_vis_covar(self, vis_rot_std_full, vis_trans_std_full):
"""Get the vis_covar only for displaying
"""
vis_rot_std = torch.cat(vis_rot_std_full, dim=0) # (2B, 3)
vis_trans_std = torch.cat(vis_trans_std_full, dim=0) # (2B, 3)
vis_std = torch.cat([vis_rot_std, vis_trans_std], dim=1) # (2B, 6)
## Process vis_meas and vis_covar predicted from camera images using CNN
vis_covar = proc_vis_covar(self.par, vis_std, vis_covar_use_fixed=self.vis_covar_use_fixed, return_diag=False, naive_vis_covar=self.naive_vis_covar)
## NOTE: All translations in EKF are at original scale, rather than /=5.4!!
# k * N(mean, cov) = N(k * mean, k^2 * cov)
vis_covar = vis_covar * (self.trans_scale_factor ** 2)
return vis_covar