-
Notifications
You must be signed in to change notification settings - Fork 193
/
Copy pathfixtures.py
173 lines (139 loc) · 5.32 KB
/
fixtures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import asyncio
import random
import string
import numpy as np
from fastapi import Body
try:
# NOTE: This is used in the EnvModel down below, which tests dynamic
# loading custom environments.
# Therefore, it is expected (and alright) that this package is not present
# some times.
import sklearn
except ImportError:
sklearn = None
from typing import Dict, List, AsyncIterator
from mlserver import MLModel
from mlserver.types import (
InferenceRequest,
InferenceResponse,
ResponseOutput,
Parameters,
)
from mlserver.codecs import NumpyCodec, decode_args, StringCodec
from mlserver.handlers.custom import custom_handler
from mlserver.errors import MLServerError
class SumModel(MLModel):
@custom_handler(rest_path="/my-custom-endpoint")
async def my_payload(self, payload: list = Body(...)) -> int:
return sum(payload)
@custom_handler(rest_path="/custom-endpoint-with-long-response")
async def long_response_endpoint(self, length: int = Body(...)) -> Dict[str, str]:
alphabet = string.ascii_lowercase
response = "".join(random.choice(alphabet) for i in range(length))
return {"foo": response}
async def predict(self, payload: InferenceRequest) -> InferenceResponse:
decoded = self.decode(payload.inputs[0])
total = decoded.sum(axis=1, keepdims=True)
output = NumpyCodec.encode_output(name="total", payload=total)
response = InferenceResponse(
id=payload.id,
model_name=self.name,
model_version=self.version,
outputs=[output],
)
if payload.parameters and payload.parameters.headers:
# "Echo" headers back prefixed by `x-`
request_headers = payload.parameters.headers
response_headers = {}
for header_name, header_value in request_headers.items():
if header_name.startswith("x-"):
response_headers[header_name] = header_value
response.parameters = Parameters(headers=response_headers)
return response
class TextModel(MLModel):
async def predict(self, payload: InferenceRequest) -> InferenceResponse:
text = StringCodec.decode_input(payload.inputs[0])[0]
return InferenceResponse(
model_name=self._settings.name,
outputs=[
StringCodec.encode_output(
name="output",
payload=[text],
use_bytes=True,
),
],
)
class TextStreamModel(MLModel):
async def predict_stream(
self, payloads: AsyncIterator[InferenceRequest]
) -> AsyncIterator[InferenceResponse]:
payload = [_ async for _ in payloads][0]
text = StringCodec.decode_input(payload.inputs[0])[0]
words = text.split(" ")
split_text = []
for i, word in enumerate(words):
split_text.append(word if i == 0 else " " + word)
for word in split_text:
await asyncio.sleep(0.5)
yield InferenceResponse(
model_name=self._settings.name,
outputs=[
StringCodec.encode_output(
name="output",
payload=[word],
use_bytes=True,
),
],
)
class ErrorModel(MLModel):
error_message = "something really bad happened"
async def load(self) -> bool:
if self._settings.parameters:
load_error = getattr(self._settings.parameters, "load_error", False)
if load_error:
raise MLServerError(self.error_message)
return True
async def predict(self, payload: InferenceRequest) -> InferenceResponse:
raise MLServerError(self.error_message)
class SimpleModel(MLModel):
@decode_args
async def predict(self, foo: np.ndarray, bar: List[str]) -> np.ndarray:
return foo.sum(axis=1, keepdims=True)
class SlowModel(MLModel):
async def load(self) -> bool:
await asyncio.sleep(10)
return True
async def infer(self, payload: InferenceRequest) -> InferenceResponse:
await asyncio.sleep(10)
return InferenceResponse(id=payload.id, model_name=self.name, outputs=[])
class EnvModel(MLModel):
async def load(self):
self._sklearn_version = sklearn.__version__
return True
async def predict(self, inference_request: InferenceRequest) -> InferenceResponse:
return InferenceResponse(
model_name=self.name,
outputs=[
StringCodec.encode_output("sklearn_version", [self._sklearn_version]),
],
)
class EchoModel(MLModel):
async def load(self) -> bool:
print("Echo Model Initialized")
return await super().load()
async def predict(self, payload: InferenceRequest) -> InferenceResponse:
return InferenceResponse(
id=payload.id,
model_name=self.name,
model_version=self.version,
outputs=[
ResponseOutput(
name=input.name,
shape=input.shape,
datatype=input.datatype,
data=input.data,
parameters=input.parameters,
)
for input in payload.inputs
],
)