MLServer extends the V2 inference protocol by adding support for a content_type
annotation.
This annotation can be provided either through the model metadata parameters
, or through the input parameters
.
By leveraging the content_type
annotation, we can provide the necessary information to MLServer so that it can decode the input payload from the "wire" V2 protocol to something meaningful to the model / user (e.g. a NumPy array).
This example will walk you through some examples which illustrate how this works, and how it can be extended.
To start with, we will write a dummy runtime which just prints the input, the decoded input and returns it.
This will serve as a testbed to showcase how the content_type
support works.
Later on, we will extend this runtime by adding custom codecs that will decode our V2 payload to custom types.
%%writefile runtime.py
import json
from mlserver import MLModel
from mlserver.types import InferenceRequest, InferenceResponse, ResponseOutput
from mlserver.codecs import DecodedParameterName
_to_exclude = {
"parameters": {DecodedParameterName, "headers"},
'inputs': {"__all__": {"parameters": {DecodedParameterName, "headers"}}}
}
class EchoRuntime(MLModel):
async def predict(self, payload: InferenceRequest) -> InferenceResponse:
outputs = []
for request_input in payload.inputs:
decoded_input = self.decode(request_input)
print(f"------ Encoded Input ({request_input.name}) ------")
as_dict = request_input.dict(exclude=_to_exclude) # type: ignore
print(json.dumps(as_dict, indent=2))
print(f"------ Decoded input ({request_input.name}) ------")
print(decoded_input)
outputs.append(
ResponseOutput(
name=request_input.name,
datatype=request_input.datatype,
shape=request_input.shape,
data=request_input.data
)
)
return InferenceResponse(model_name=self.name, outputs=outputs)
As you can see above, this runtime will decode the incoming payloads by calling the self.decode()
helper method.
This method will check what's the right content type for each input in the following order:
- Is there any content type defined in the
inputs[].parameters.content_type
field within the request payload? - Is there any content type defined in the
inputs[].parameters.content_type
field within the model metadata? - Is there any default content type that should be assumed?
In order to enable this runtime, we will also create a model-settings.json
file.
This file should be present (or accessible from) in the folder where we run mlserver start .
.
%%writefile model-settings.json
{
"name": "content-type-example",
"implementation": "runtime.EchoRuntime"
}
Our initial step will be to decide the content type based on the incoming inputs[].parameters
field.
For this, we will start our MLServer in the background (e.g. running mlserver start .
)
import requests
payload = {
"inputs": [
{
"name": "parameters-np",
"datatype": "INT32",
"shape": [2, 2],
"data": [1, 2, 3, 4],
"parameters": {
"content_type": "np"
}
},
{
"name": "parameters-str",
"datatype": "BYTES",
"shape": [1],
"data": "hello world 😁",
"parameters": {
"content_type": "str"
}
}
]
}
response = requests.post(
"http://localhost:8080/v2/models/content-type-example/infer",
json=payload
)
As you've probably already noticed, writing request payloads compliant with both the V2 Inference Protocol requires a certain knowledge about both the V2 spec and the structure expected by each content type. To account for this and simplify usage, the MLServer package exposes a set of utilities which will help you interact with your models via the V2 protocol.
These helpers are mainly shaped as "codecs". That is, abstractions which know how to "encode" and "decode" arbitrary Python datatypes to and from the V2 Inference Protocol.
Generally, we recommend using the existing set of codecs to generate your V2 payloads. This will ensure that requests and responses follow the right structure, and should provide a more seamless experience.
Following with our previous example, the same code could be rewritten using codecs as:
import requests
import numpy as np
from mlserver.types import InferenceRequest, InferenceResponse
from mlserver.codecs import NumpyCodec, StringCodec
parameters_np = np.array([[1, 2], [3, 4]])
parameters_str = ["hello world 😁"]
payload = InferenceRequest(
inputs=[
NumpyCodec.encode_input("parameters-np", parameters_np),
# The `use_bytes=False` flag will ensure that the encoded payload is JSON-compatible
StringCodec.encode_input("parameters-str", parameters_str, use_bytes=False),
]
)
response = requests.post(
"http://localhost:8080/v2/models/content-type-example/infer",
json=payload.model_dump()
)
response_payload = InferenceResponse.parse_raw(response.text)
print(NumpyCodec.decode_output(response_payload.outputs[0]))
print(StringCodec.decode_output(response_payload.outputs[1]))
Note that the rewritten snippet now makes use of the built-in InferenceRequest
class, which represents a V2 inference request.
On top of that, it also uses the NumpyCodec
and StringCodec
implementations, which know how to encode a Numpy array and a list of strings into V2-compatible request inputs.
Our next step will be to define the expected content type through the model metadata.
This can be done by extending the model-settings.json
file, and adding a section on inputs.
%%writefile model-settings.json
{
"name": "content-type-example",
"implementation": "runtime.EchoRuntime",
"inputs": [
{
"name": "metadata-np",
"datatype": "INT32",
"shape": [2, 2],
"parameters": {
"content_type": "np"
}
},
{
"name": "metadata-str",
"datatype": "BYTES",
"shape": [11],
"parameters": {
"content_type": "str"
}
}
]
}
After adding this metadata, we will re-start MLServer (e.g. mlserver start .
) and we will send a new request without any explicit parameters
.
import requests
payload = {
"inputs": [
{
"name": "metadata-np",
"datatype": "INT32",
"shape": [2, 2],
"data": [1, 2, 3, 4],
},
{
"name": "metadata-str",
"datatype": "BYTES",
"shape": [11],
"data": "hello world 😁",
}
]
}
response = requests.post(
"http://localhost:8080/v2/models/content-type-example/infer",
json=payload
)
As you should be able to see in the server logs, MLServer will cross-reference the input names against the model metadata to find the right content type.
There may be cases where a custom inference runtime may need to encode / decode to custom datatypes.
As an example, we can think of computer vision models which may only operate with pillow
image objects.
In these scenarios, it's possible to extend the Codec
interface to write our custom encoding logic.
A Codec
, is simply an object which defines a decode()
and encode()
methods.
To illustrate how this would work, we will extend our custom runtime to add a custom PillowCodec
.
%%writefile runtime.py
import io
import json
from PIL import Image
from mlserver import MLModel
from mlserver.types import (
InferenceRequest,
InferenceResponse,
RequestInput,
ResponseOutput,
)
from mlserver.codecs import NumpyCodec, register_input_codec, DecodedParameterName
from mlserver.codecs.utils import InputOrOutput
_to_exclude = {
"parameters": {DecodedParameterName},
"inputs": {"__all__": {"parameters": {DecodedParameterName}}},
}
@register_input_codec
class PillowCodec(NumpyCodec):
ContentType = "img"
DefaultMode = "L"
@classmethod
def can_encode(cls, payload: Image) -> bool:
return isinstance(payload, Image)
@classmethod
def _decode(cls, input_or_output: InputOrOutput) -> Image:
if input_or_output.datatype != "BYTES":
# If not bytes, assume it's an array
image_array = super().decode_input(input_or_output) # type: ignore
return Image.fromarray(image_array, mode=cls.DefaultMode)
encoded = input_or_output.data
if isinstance(encoded, str):
encoded = encoded.encode()
return Image.frombytes(
mode=cls.DefaultMode, size=input_or_output.shape, data=encoded
)
@classmethod
def encode_output(cls, name: str, payload: Image) -> ResponseOutput: # type: ignore
byte_array = io.BytesIO()
payload.save(byte_array, mode=cls.DefaultMode)
return ResponseOutput(
name=name, shape=payload.size, datatype="BYTES", data=byte_array.getvalue()
)
@classmethod
def decode_output(cls, response_output: ResponseOutput) -> Image:
return cls._decode(response_output)
@classmethod
def encode_input(cls, name: str, payload: Image) -> RequestInput: # type: ignore
output = cls.encode_output(name, payload)
return RequestInput(
name=output.name,
shape=output.shape,
datatype=output.datatype,
data=output.data,
)
@classmethod
def decode_input(cls, request_input: RequestInput) -> Image:
return cls._decode(request_input)
class EchoRuntime(MLModel):
async def predict(self, payload: InferenceRequest) -> InferenceResponse:
outputs = []
for request_input in payload.inputs:
decoded_input = self.decode(request_input)
print(f"------ Encoded Input ({request_input.name}) ------")
as_dict = request_input.dict(exclude=_to_exclude) # type: ignore
print(json.dumps(as_dict, indent=2))
print(f"------ Decoded input ({request_input.name}) ------")
print(decoded_input)
outputs.append(
ResponseOutput(
name=request_input.name,
datatype=request_input.datatype,
shape=request_input.shape,
data=request_input.data,
)
)
return InferenceResponse(model_name=self.name, outputs=outputs)
We should now be able to restart our instance of MLServer (i.e. with the mlserver start .
command), to send a few test requests.
import requests
payload = {
"inputs": [
{
"name": "image-int32",
"datatype": "INT32",
"shape": [8, 8],
"data": [
1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0
],
"parameters": {
"content_type": "img"
}
},
{
"name": "image-bytes",
"datatype": "BYTES",
"shape": [8, 8],
"data": (
"10101010"
"10101010"
"10101010"
"10101010"
"10101010"
"10101010"
"10101010"
"10101010"
),
"parameters": {
"content_type": "img"
}
}
]
}
response = requests.post(
"http://localhost:8080/v2/models/content-type-example/infer",
json=payload
)
As you should be able to see in the MLServer logs, the server is now able to decode the payload into a Pillow image.
This example also illustrates how Codec
objects can be compatible with multiple datatype
values (e.g. tensor and BYTES
in this case).
So far, we've seen how you can specify codecs so that they get applied at the input level. However, it is also possible to use request-wide codecs that aggregate multiple inputs to decode the payload. This is usually relevant for cases where the models expect a multi-column input type, like a Pandas DataFrame.
To illustrate this, we will first tweak our EchoRuntime
so that it prints the decoded contents at the request level.
%%writefile runtime.py
import json
from mlserver import MLModel
from mlserver.types import InferenceRequest, InferenceResponse, ResponseOutput
from mlserver.codecs import DecodedParameterName
_to_exclude = {
"parameters": {DecodedParameterName},
'inputs': {"__all__": {"parameters": {DecodedParameterName}}}
}
class EchoRuntime(MLModel):
async def predict(self, payload: InferenceRequest) -> InferenceResponse:
print("------ Encoded Input (request) ------")
as_dict = payload.dict(exclude=_to_exclude) # type: ignore
print(json.dumps(as_dict, indent=2))
print("------ Decoded input (request) ------")
decoded_request = None
if payload.parameters:
decoded_request = getattr(payload.parameters, DecodedParameterName)
print(decoded_request)
outputs = []
for request_input in payload.inputs:
outputs.append(
ResponseOutput(
name=request_input.name,
datatype=request_input.datatype,
shape=request_input.shape,
data=request_input.data
)
)
return InferenceResponse(model_name=self.name, outputs=outputs)
We should now be able to restart our instance of MLServer (i.e. with the mlserver start .
command), to send a few test requests.
import requests
payload = {
"inputs": [
{
"name": "parameters-np",
"datatype": "INT32",
"shape": [2, 2],
"data": [1, 2, 3, 4],
"parameters": {
"content_type": "np"
}
},
{
"name": "parameters-str",
"datatype": "BYTES",
"shape": [2, 11],
"data": ["hello world 😁", "bye bye 😁"],
"parameters": {
"content_type": "str"
}
}
],
"parameters": {
"content_type": "pd"
}
}
response = requests.post(
"http://localhost:8080/v2/models/content-type-example/infer",
json=payload
)