This document has instructions for running ResNet50 FP32 inference using intel-extension-for-pytorch.
pytorch-resnet50-fp32-inference.tar.gz
The ImageNet validation dataset is used when testing accuracy. The inference scripts use synthetic data, so no dataset is needed.
Download and extract the ImageNet2012 dataset from http://www.image-net.org/, then move validation images to labeled subfolders, using the valprep.sh shell script
The accuracy script looks for a folder named val
, so after running the
data prep script, your folder structure should look something like this:
imagenet
└── val
├── ILSVRC2012_img_val.tar
├── n01440764
│ ├── ILSVRC2012_val_00000293.JPEG
│ ├── ILSVRC2012_val_00002138.JPEG
│ ├── ILSVRC2012_val_00003014.JPEG
│ ├── ILSVRC2012_val_00006697.JPEG
│ └── ...
└── ...
The folder that contains the val
directory should be set as the
DATASET_DIR
when running accuracy
(for example: export DATASET_DIR=/home/<user>/imagenet
).
Script name | Description |
---|---|
fp32_online_inference.sh |
Runs online inference using synthetic data (batch_size=1). |
fp32_batch_inference.sh |
Runs batch inference using synthetic data (batch_size=128). |
fp32_accuracy.sh |
Measures the model accuracy (batch_size=128). |
These quickstart scripts can be run in different environments:
To run on bare metal, the following prerequisites must be installed in your environment:
- Python 3
- intel-extension-for-pytorch
- torchvision==v0.6.1
- numactl
Download and untar the model package and then run a quickstart script.
# Optional: to run accuracy script
export DATASET_DIR=<path to the preprocessed imagenet dataset>
# Download and extract the model package
wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v2_7_0/pytorch-resnet50-fp32-inference.tar.gz
tar -xzf pytorch-resnet50-fp32-inference.tar.gz
cd pytorch-resnet50-fp32-inference
./quickstart/<script name>.sh
Use the base PyTorch 1.8 container
intel/intel-optimized-pytorch:1.8.0
to run ResNet50 FP32 inference.
To run the model quickstart scripts using the base PyTorch 1.8 container,
you will need to provide a volume mount for the pytorch-resnet50-fp32-inference package.
To run the accuracy test, you will need
mount a volume and set the DATASET_DIR
environment variable to point
to the ImageNet validation dataset. The accuracy
script also downloads the pretrained model at runtime, so provide proxy
environment variables, if necessary.
DATASET_DIR=<path to the dataset folder>
docker run \
--env DATASET_DIR=${DATASET_DIR} \
--env http_proxy=${http_proxy} \
--env https_proxy=${https_proxy} \
--volume ${DATASET_DIR}:${DATASET_DIR} \
--volume <path to the model package directory>:/pytorch-resnet50-fp32-inference \
--privileged --init -it \
intel/intel-optimized-pytorch:1.8.0 /bin/bash
Synthetic data is used when running batch or online inference, so no dataset mount is needed.
docker run \
--privileged --init -it \
--volume <path to the model package directory>:/pytorch-resnet50-fp32-inference \
intel/intel-optimized-pytorch:1.8.0 /bin/bash
Run quickstart scripts:
cd /pytorch-resnet50-fp32-inference
bash quickstart/<script name>.sh
If you are new to docker and are running into issues with the container, see this document for troubleshooting tips.