This document has advanced instructions for running SSD-ResNet34 BFloat16
inference, which provides more control over the individual parameters that
are used. For more information on using /benchmarks/launch_benchmark.py
,
see the launch benchmark documentation.
Prior to using these instructions, please follow the setup instructions from
the model's README and/or the
AI Kit documentation to get your environment
setup (if running on bare metal) and download the dataset, pretrained model, etc.
If you are using AI Kit, please exclude the --docker-image
flag from the
commands below, since you will be running the the TensorFlow conda environment
instead of docker.
Any of the launch_benchmark.py
commands below can be run on bare metal by
removing the --docker-image
arg. Ensure that you have all of the
required prerequisites installed in your environment
before running without the docker container.
If you are new to docker and are running into issues with the container, see this document for troubleshooting tips.
Once your environment is setup, navigate to the benchmarks
directory of
the model zoo and set environment variables pointing to the directory for the
coco validation dataset, TensorFlow models repo, pretrained model frozen graph,
and an output directory where log files will be written.
# cd to the benchmarks directory in the model zoo
cd benchmarks
export DATASET_DIR=<directory with the validation-*-of-* files (for accuracy testing only)>
export TF_MODELS_DIR=<path to the TensorFlow Models repo>
export PRETRAINED_MODEL=<path to the 300x300 or 1200x1200 pretrained model pb file>
export OUTPUT_DIR=<directory where log files will be written>
SSD-ResNet34 can be run for testing batch or online inference, or testing accuracy.
To run for batch and online inference, use the command below. If you are
running with docker, you will also need to provide the ssd-resnet-benchmarks
path for volume
flag. To run without docker, omit the --docker-image
and
--volume
flags. By default it runs with input size 300x300, you may
add -- input-size=1200
flag to run benchmark with input size 1200x1200.
Use the 300x300 or 1200x1200 pretrained model, depending on the input size.
Optionally, you can also specify the number of warmup-steps
and steps
as
shown in the example below, the default values are warmup-steps=200
and steps=800
.
# benchmarks with input size 300x300
python launch_benchmark.py \
--in-graph ${PRETRAINED_MODEL} \
--model-source-dir ${TF_MODELS_DIR} \
--model-name ssd-resnet34 \
--framework tensorflow \
--precision bfloat16 \
--mode inference \
--socket-id 0 \
--batch-size 1 \
--docker-image intel/intel-optimized-tensorflow:latest \
--volume /home/<user>/ssd-resnet-benchmarks:/workspace/ssd-resnet-benchmarks \
--output-dir ${OUTPUT_DIR} \
--benchmark-only \
-- warmup-steps=50 steps=200
To run the accuracy test, use the command below. By default it runs with
input size 300x300, you may add -- input-size=1200
flag to run the test with
input size 1200x1200. Use the 300x300 or 1200x1200 pretrained model,
depending on the input size. To run without docker, omit the --docker-image
and
--volume
flags.
# accuracy test with input size 1200x1200
python launch_benchmark.py \
--data-location ${DATASET_DIR} \
--in-graph ${PRETRAINED_MODEL} \
--model-source-dir ${TF_MODELS_DIR} \
--model-name ssd-resnet34 \
--framework tensorflow \
--precision bfloat16 \
--mode inference \
--socket-id 0 \
--batch-size 1 \
--docker-image intel/intel-optimized-tensorflow:latest \
--volume /home/<user>/ssd-resnet-benchmarks:/workspace/ssd-resnet-benchmarks \
--output-dir ${OUTPUT_DIR} \
--accuracy-only \
-- input-size=1200
The log file is saved to the ${OUTPUT_DIR}
.
Below is a sample log file tail when testing performance:
Batchsize: 1
Time spent per BATCH: ... ms
Total samples/sec: ... samples/s
Below is a sample log file tail when testing accuracy:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.224
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.410
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.220
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.140
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.297
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.257
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.214
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.342
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.367
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.185
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.454
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.443