-
Notifications
You must be signed in to change notification settings - Fork 103
/
LogisticRegression.cs
181 lines (147 loc) · 7.16 KB
/
LogisticRegression.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*****************************************************************************
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************************************************************/
using System.Diagnostics;
using System.IO;
using Tensorflow;
using Tensorflow.NumPy;
using static Tensorflow.Binding;
namespace TensorFlowNET.Examples
{
/// <summary>
/// A logistic regression learning algorithm example using TensorFlow library.
/// This example is using the MNIST database of handwritten digits
/// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py
/// </summary>
public class LogisticRegression : SciSharpExample, IExample
{
public int training_epochs = 10;
public int? train_size = null;
public int validation_size = 5000;
public int? test_size = null;
public int batch_size = 100;
private float learning_rate = 0.01f;
private int display_step = 1;
float accuracy = 0f;
Datasets<MnistDataSet> mnist;
public ExampleConfig InitConfig()
=> Config = new ExampleConfig
{
Name = "Logistic Regression (Graph)",
Enabled = true,
IsImportingGraph = false
};
public bool Run()
{
PrepareData();
tf.compat.v1.disable_eager_execution();
Train();
// Predict();
return accuracy > 0.9;
}
public override void PrepareData()
{
var loader = new MnistModelLoader();
mnist = loader.LoadAsync(".resources/mnist", oneHot: true, trainSize: train_size, validationSize: validation_size, testSize: test_size, showProgressInConsole: true).Result;
}
public override void Train()
{
// tf Graph Input
var x = tf.placeholder(tf.float32, (-1, 784)); // mnist data image of shape 28*28=784
var y = tf.placeholder(tf.float32, (-1, 10)); // 0-9 digits recognition => 10 classes
// Set model weights
var W = tf.Variable(tf.zeros((784, 10)));
var b = tf.Variable(tf.zeros(10));
// Construct model
var pred = tf.nn.softmax(tf.matmul(x, W) + b); // Softmax
// Minimize error using cross entropy
var cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices: 1));
// Gradient Descent
var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost);
// Initialize the variables (i.e. assign their default value)
var init = tf.global_variables_initializer();
var total_batch = mnist.Train.NumOfExamples / batch_size;
var sw = new Stopwatch();
using var sess = tf.Session();
// Run the initializer
sess.run(init);
// Training cycle
foreach (var epoch in range(training_epochs))
{
sw.Start();
var avg_cost = 0.0f;
// Loop over all batches
foreach (var i in range(total_batch))
{
var start = i * batch_size;
var end = (i + 1) * batch_size;
var (batch_xs, batch_ys) = mnist.GetNextBatch(mnist.Train.Data, mnist.Train.Labels, start, end);
// Run optimization op (backprop) and cost op (to get loss value)
(_, float c) = sess.run((optimizer, cost),
(x, batch_xs),
(y, batch_ys));
// Compute average loss
avg_cost += c / total_batch;
}
sw.Stop();
// Display logs per epoch step
if ((epoch + 1) % display_step == 0)
print($"Epoch: {(epoch + 1):D4} Cost: {avg_cost:G9} Elapsed: {sw.ElapsedMilliseconds}ms");
sw.Reset();
}
print("Optimization Finished!");
// SaveModel(sess);
// Test model
var correct_prediction = tf.equal(tf.math.argmax(pred, 1), tf.math.argmax(y, 1));
// Calculate accuracy
var acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32));
accuracy = acc.eval(sess, (x, mnist.Test.Data), (y, mnist.Test.Labels));
print($"Accuracy: {accuracy:F4}");
}
public void SaveModel(Session sess)
{
var saver = tf.train.Saver();
saver.save(sess, ".resources/logistic_regression/model.ckpt");
tf.train.write_graph(sess.graph, ".resources/logistic_regression", "model.pbtxt", as_text: true);
FreezeGraph.freeze_graph(input_graph: ".resources/logistic_regression/model.pbtxt",
input_saver: "",
input_binary: false,
input_checkpoint: ".resources/logistic_regression/model.ckpt",
output_node_names: "Softmax",
restore_op_name: "save/restore_all",
filename_tensor_name: "save/Const:0",
output_graph: ".resources/logistic_regression/model.pb",
clear_devices: true,
initializer_nodes: "");
}
public override void Predict()
{
var graph = new Graph().as_default();
using var sess = tf.Session(graph);
graph.Import(Path.Join(".resources/logistic_regression", "model.pb"));
// restoring the model
// var saver = tf.train.import_meta_graph("logistic_regression/tensorflowModel.ckpt.meta");
// saver.restore(sess, tf.train.latest_checkpoint('logistic_regression'));
var pred = graph.OperationByName("Softmax");
var output = pred.outputs[0];
var x = graph.OperationByName("Placeholder");
var input = x.outputs[0];
// predict
var (batch_xs, batch_ys) = mnist.Train.GetNextBatch(10);
var results = sess.run(output, new FeedItem(input, batch_xs[np.arange(1)]));
if ((bool)(np.argmax(results[0]) == np.argmax(batch_ys[0])))
print("predicted OK!");
else
throw new ValueError("predict error, should be 90% accuracy");
}
}
}