-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
65 lines (52 loc) · 2.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from textSummarizer.pipeline.stage_01_data_ingestion import DataIngestionPipeline
from textSummarizer.pipeline.stage_02_data_validation import DataValidationPipeline
from textSummarizer.pipeline.stage_03_data_transformation import DataTransformationPipeline
from textSummarizer.pipeline.stage_04_model_trainer import ModelTrainerTrainingPipeline
from textSummarizer.pipeline.stage_05_model_evaluation import ModelEvaluationTrainingPipeline
from textSummarizer.logging import Logger
STAGE_NAME = 'Data Ingestion Stage'
try:
Logger.info(f'>>>>>>>> Stage {STAGE_NAME} started <<<<<<<<')
data_ingestion = DataIngestionPipeline()
data_ingestion.main()
Logger.info(f'>>>>>>>> Stage {STAGE_NAME} completed <<<<<<')
except Exception as e:
Logger.exception(e)
raise e
STAGE_NAME = 'Data Validation Stage'
try:
Logger.info(f'>>>>>>>> Stage {STAGE_NAME} started <<<<<<<<')
data_validation = DataValidationPipeline()
data_validation.main()
Logger.info(f'>>>>>>>> Stage {STAGE_NAME} completed <<<<<<')
except Exception as e:
Logger.exception(e)
raise e
STAGE_NAME = 'Data Transformation Stage'
try:
Logger.info(f'>>>>>>>> Stage {STAGE_NAME} started <<<<<<<<')
data_transformation = DataTransformationPipeline()
data_transformation.main()
Logger.info(f'>>>>>>>> Stage {STAGE_NAME} completed <<<<<<')
except Exception as e:
Logger.exception(e)
raise e
# STAGE_NAME = "Model Trainer stage"
# try:
# Logger.info(f'>>>>>>>> Stage {STAGE_NAME} started <<<<<<<<')
# model_trainer = ModelTrainerTrainingPipeline()
# model_trainer.main()
# Logger.info(f'>>>>>>>> Stage {STAGE_NAME} completed <<<<<<')
# except Exception as e:
# Logger.exception(e)
# raise e
STAGE_NAME = "Model Evaluation stage"
try:
Logger.info(f"*******************")
Logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
model_evaluation = ModelEvaluationTrainingPipeline()
model_evaluation.main()
Logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
Logger.exception(e)
raise e