-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvpr_visualsearch_pca.m
263 lines (210 loc) · 7.55 KB
/
cvpr_visualsearch_pca.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
%% EEE3032 - Computer Vision and Pattern Recognition (ee3.cvpr)
%%
%% cvpr_visualsearch.m
%% Skeleton code provided as part of the coursework assessment
%%
%% This code will load in all descriptors pre-computed (by the
%% function cvpr_computedescriptors) from the images in the MSRCv2 dataset.
%%
%% It will pick a descriptor at random and compare all other descriptors to
%% it - by calling cvpr_compare. In doing so it will rank the images by
%% similarity to the randomly picked descriptor. Note that initially the
%% function cvpr_compare returns a random number - you need to code it
%% so that it returns the Euclidean distance or some other distance metric
%% between the two descriptors it is passed.
%%
%% (c) John Collomosse 2010 (J.Collomosse@surrey.ac.uk)
%% Centre for Vision Speech and Signal Processing (CVSSP)
%% University of Surrey, United Kingdom
close all;
clear all;
%% Edit the following line to the folder you unzipped the MSRCv2 dataset to
DATASET_FOLDER = 'dataset';
%% Folder that holds the results...
DESCRIPTOR_FOLDER = 'descriptors';
%% and within that folder, another folder to hold the descriptors
%% we are interested in working with
% DESCRIPTOR_SUBFOLDER='avgRGB';
DESCRIPTOR_SUBFOLDER='globalRGBhisto';
% DESCRIPTOR_SUBFOLDER='spatialColour';
% DESCRIPTOR_SUBFOLDER='spatialTexture';
% DESCRIPTOR_SUBFOLDER='spatialColourTexture';
CATEGORIES = ["Farm Animal"
"Tree"
"Building"
"Plane"
"Cow"
"Face"
"Car"
"Bike"
"Sheep"
"Flower"
"Sign"
"Bird"
"Book Shelf"
"Bench"
"Cat"
"Dog"
"Road"
"Water Features"
"Human Figures"
"Coast"
];
QUERY_INDEXES=[301 358 384 436 447 476 509 537 572 5 61 80 97 127 179 181 217 266 276 333];
% 1_10 2_16 3_12 4_4 5_15 6_14 7_17 8_15 9_1 10_14 11_8 12_26 13_10 14_10
% 15_8 16_10 17_16 18_5 19_15 20_12
%% 1) Load all the descriptors into "ALLFEAT"
%% each row of ALLFEAT is a descriptor (is an image)
ALLFEAT=[];
ALLFILES=cell(1,0);
ALLCATs=[];
ctr=1;
allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
for filenum=1:length(allfiles)
fname=allfiles(filenum).name;
%identify photo category for PR calculation
split_string = split(fname, '_');
ALLCATs(filenum) = str2double(split_string(1));
imgfname_full=([DATASET_FOLDER,'/Images/',fname]);
img=double(imread(imgfname_full))./255;
thesefeat=[];
featfile=[DESCRIPTOR_FOLDER,'/',DESCRIPTOR_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat
load(featfile,'F');
ALLFILES{ctr}=imgfname_full;
ALLFEAT=[ALLFEAT ; F];
ctr=ctr+1;
end
% get counts for each category for PR calculation
CAT_HIST = histogram(ALLCATs).Values;
CAT_TOTAL = length(CAT_HIST);
NIMG=size(ALLFEAT,1); % number of images in collection
descriptor_list = ALLFEAT;
confusion_matrix = zeros(CAT_TOTAL);
all_precision = [];
all_recall = [];
AP_values = zeros([1, CAT_TOTAL]);
for iteration=1:CAT_TOTAL
%% 2) Pick an image at random to be the query
queryimg=QUERY_INDEXES(iteration); % index of a random image
%% 3) Compute EigenModel
E = getEigenModel(descriptor_list);
E = deflateEigen(E, 0.986);
%% 4) Project data to lower dimensionality
descriptor_list=descriptor_list-repmat(E.org,size(descriptor_list,1),1);
descriptor_list=((E.vct')*(descriptor_list'))';
%% 5) Compute the distance of image to the query
dst=[];
for i=1:NIMG
candidate=descriptor_list(i,:);
query=descriptor_list(queryimg,:);
category=ALLCATs(i);
%% COMPARE FUNCTION
thedst=compareMahalanobis(E, query, candidate);
dst=[dst ; [thedst i category]];
end
dst=sortrows(dst,1); % sort the results
%% 6) Calculate PR
precision_values=zeros([1, NIMG-1]);
recall_values=zeros([1, NIMG-1]);
correct_at_n=zeros([1, NIMG-1]);
query_row = dst(1,:);
query_category = query_row(1,3);
% if query_category ~= iteration
% dst
% end
fprintf('category was %s\n', CATEGORIES(query_category))
dst = dst(2:NIMG, :);
%calculate PR for each n
for i=1:size(dst, 1)
% NIMG-1 and j iterator variable is in order to skip calculating for query image
rows = dst(1:i, :);
correct_results = 0;
incorrect_results = 0;
if i > 1
for n=1:i - 1
row = rows(n, :);
category = row(3);
if category == iteration
correct_results = correct_results + 1;
else
incorrect_results = incorrect_results + 1;
end
end
end
% LAST ROW
row = rows(i, :);
category = row(3);
if category == iteration
correct_results = correct_results + 1;
correct_at_n(i) = 1;
else
incorrect_results = incorrect_results + 1;
end
precision = correct_results / i;
recall = correct_results / (CAT_HIST(1,iteration) - 1);
precision_values(i) = precision;
recall_values(i) = recall;
end
%% 7) calculate AP
average_precision = sum(precision_values .* correct_at_n) / CAT_HIST(1,iteration);
AP_values(iteration) = average_precision;
all_precision = [all_precision ; precision_values];
all_recall = [all_recall ; recall_values];
%% 6) plot cumulative PR curve
% figure(1)
% plot(recall_values, precision_values,'LineWidth',1.5);
% hold on;
% title('PR Curve');
% xlabel('Recall');
% ylabel('Precision');
% xlim([0 1]);
% ylim([0 1]);
%% 8) Visualise the results and Populate confusion matrix
%% These may be a little hard to see using imgshow
%% If you have access, try using imshow(outdisplay) or imagesc(outdisplay)
SHOW=25; % Show top 25 results
dst=dst(1:SHOW,:);
outdisplay=[];
for i=1:size(dst,1)
img=imread(ALLFILES{dst(i,2)});
img=img(1:2:end,1:2:end,:); % make image a quarter size
img=img(1:81,:,:); % crop image to uniform size vertically (some MSVC images are different heights)
outdisplay=[outdisplay img];
%populate confusion matrix
confusion_matrix(dst(i,3), iteration) = confusion_matrix(dst(i,3), iteration) + 1;
end
% figure(3)
% imgshow(outdisplay);
% axis off;
end
%% 9) Plot average PR curve
figure(4)
mean_precision = mean(all_precision);
mean_recall = mean(all_recall);
plot(mean_recall, mean_precision,'LineWidth',5);
title('Spatial Colour and Texture Average PR with PCA (4x3, 7 bins, thresh. 0.09)');
xlabel('Average Recall');
ylabel('Average Precision');
xlim([0 1]);
ylim([0 1]);
%% 11) normalise confusion matrix
figure(5)
norm_confusion_matrix = confusion_matrix ./ sum(confusion_matrix, 'all');
cm = confusionchart(confusion_matrix, CATEGORIES, 'Normalization', 'column-normalized');
cm.Title = 'Spatial Colour and Texture Confusion Matrix with PCA (4x3, 7 bins, thresh. 0.09)';
xlabel('Query Classification');
ylabel('Ground Truth');
%% 12) Calculate MAP
% figure(4)
% histogram(AP_values);
% title('Average Precision Distribution');
% ylabel('Count');
% xlabel('Average Precision');
% xlim([0, 1]);
MAP = mean(AP_values)
AP_sd = std(AP_values);
% figure(2)
% plot(1:CAT_TOTAL, AP_values);
% title('Average Precision Per Run');
% xlabel('Run');
% ylabel('Average Precision');