forked from huawei-noah/VanillaNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine.py
198 lines (166 loc) · 8.56 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Iterable, Optional
import torch
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
import logging
import utils
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None,
wandb_logger=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None,
num_training_steps_per_epoch=None, update_freq=None, use_amp=False):
model.train(True)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 200
optimizer.zero_grad()
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
step = data_iter_step // update_freq
if step >= num_training_steps_per_epoch:
continue
it = start_steps + step # global training iteration
# Update LR & WD for the first acc
if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
if use_amp:
with torch.cuda.amp.autocast():
output = model(samples)
loss = criterion(output, targets)
else: # full precision
output = model(samples)
loss = criterion(output, targets)
loss_value = loss.item()
# TODO: learn it
if not math.isfinite(loss_value): # this could trigger if using AMP
logging.error("Logging: Loss is {}, stopping training".format(loss_value))
print("Loss is {}, stopping training".format(loss_value))
assert math.isfinite(loss_value)
if use_amp:
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss /= update_freq
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
if model_ema is not None:
for iter_model_ema in model_ema:
iter_model_ema.update(model)
for i in range(len(iter_model_ema.ema.stages)):
if hasattr(iter_model_ema.ema.stages[i], 'act_learn'):
iter_model_ema.ema.stages[i].act_learn = model.module.stages[i].act_learn
if hasattr(iter_model_ema.ema, 'act_learn'):
iter_model_ema.ema.act_learn = model.module.act_learn
else: # full precision
loss /= update_freq
loss.backward()
if (data_iter_step + 1) % update_freq == 0:
optimizer.step()
optimizer.zero_grad()
if model_ema is not None:
for iter_model_ema in model_ema:
iter_model_ema.update(model)
for i in range(len(iter_model_ema.ema.stages)):
if hasattr(iter_model_ema.ema.stages[i], 'act_learn'):
iter_model_ema.ema.stages[i].act_learn = model.module.stages[i].act_learn
if hasattr(iter_model_ema.ema, 'act_learn'):
iter_model_ema.ema.act_learn = model.module.act_learn
# TODO: torch.cuda.synchronize(), time.
torch.cuda.synchronize()
if mixup_fn is None:
class_acc = (output.max(-1)[-1] == targets).float().mean()
else:
class_acc = None
metric_logger.update(loss=loss_value)
metric_logger.update(class_acc=class_acc)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
if use_amp:
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
log_writer.update(loss=loss_value, head="loss")
log_writer.update(class_acc=class_acc, head="loss")
log_writer.update(lr=max_lr, head="opt")
log_writer.update(min_lr=min_lr, head="opt")
log_writer.update(weight_decay=weight_decay_value, head="opt")
if use_amp:
log_writer.update(grad_norm=grad_norm, head="opt")
log_writer.set_step()
if wandb_logger:
wandb_logger._wandb.log({
'Rank-0 Batch Wise/train_loss': loss_value,
'Rank-0 Batch Wise/train_max_lr': max_lr,
'Rank-0 Batch Wise/train_min_lr': min_lr
}, commit=False)
if class_acc:
wandb_logger._wandb.log({'Rank-0 Batch Wise/train_class_acc': class_acc}, commit=False)
if use_amp:
wandb_logger._wandb.log({'Rank-0 Batch Wise/train_grad_norm': grad_norm}, commit=False)
wandb_logger._wandb.log({'Rank-0 Batch Wise/global_train_step': it})
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, use_amp=False, real_labels=None):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 200, header):
images = batch[0]
target = batch[-1]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
if use_amp:
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
else:
output = model(images)
loss = criterion(output, target)
if real_labels is not None:
real_labels.add_result(output)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* val Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
if real_labels is not None:
# real labels mode replaces topk values at the end
acc1, acc5 = real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5)
print('* REAL Acc@1 {:.3f} Acc@5 {:.3f}'.format(acc1, acc5))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}