|
| 1 | +#!/bin/bash |
| 2 | +# Quick RSI Analysis using Python with system packages |
| 3 | + |
| 4 | +cd /mnt/c/Users/DaviCastroSamora/Documents/SamoraDC/RustAlgorithmTrading |
| 5 | + |
| 6 | +# Create venv if not exists |
| 7 | +if [ ! -d "venv" ]; then |
| 8 | + echo "Creating virtual environment..." |
| 9 | + python3 -m venv venv |
| 10 | +fi |
| 11 | + |
| 12 | +# Activate and install dependencies |
| 13 | +source venv/bin/activate |
| 14 | +pip install --quiet pandas pyarrow numpy 2>&1 | grep -v "Requirement already" |
| 15 | + |
| 16 | +echo "==================== RSI SIGNAL ANALYSIS ====================" |
| 17 | +echo "" |
| 18 | + |
| 19 | +# Run quick analysis |
| 20 | +python3 << 'EOF' |
| 21 | +import pandas as pd |
| 22 | +import numpy as np |
| 23 | +import json |
| 24 | +from pathlib import Path |
| 25 | +
|
| 26 | +symbols = ['AAPL', 'MSFT', 'GOOGL'] |
| 27 | +results = {} |
| 28 | +
|
| 29 | +print("LOADING & ANALYZING DATA...\n") |
| 30 | +
|
| 31 | +for symbol in symbols: |
| 32 | + # Load parquet |
| 33 | + df = pd.read_parquet(f'data/historical/{symbol}.parquet') |
| 34 | +
|
| 35 | + # Calculate RSI(14) |
| 36 | + delta = df['close'].diff() |
| 37 | + gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() |
| 38 | + loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() |
| 39 | + rs = gain / loss |
| 40 | + rsi = 100 - (100 / (1 + rs)) |
| 41 | + rsi_valid = rsi.dropna() |
| 42 | +
|
| 43 | + # Statistics |
| 44 | + stats = { |
| 45 | + 'min': float(rsi_valid.min()), |
| 46 | + 'max': float(rsi_valid.max()), |
| 47 | + 'mean': float(rsi_valid.mean()), |
| 48 | + 'median': float(rsi_valid.median()), |
| 49 | + 'std': float(rsi_valid.std()), |
| 50 | + 'q25': float(rsi_valid.quantile(0.25)), |
| 51 | + 'q75': float(rsi_valid.quantile(0.75)), |
| 52 | + } |
| 53 | +
|
| 54 | + # Threshold analysis |
| 55 | + oversold_35 = (rsi_valid <= 35).sum() |
| 56 | + overbought_65 = (rsi_valid >= 65).sum() |
| 57 | + oversold_30 = (rsi_valid <= 30).sum() |
| 58 | + overbought_70 = (rsi_valid >= 70).sum() |
| 59 | +
|
| 60 | + # Crossings |
| 61 | + cross_35_down = ((rsi_valid.shift(1) > 35) & (rsi_valid <= 35)).sum() |
| 62 | + cross_65_up = ((rsi_valid.shift(1) < 65) & (rsi_valid >= 65)).sum() |
| 63 | + cross_30_down = ((rsi_valid.shift(1) > 30) & (rsi_valid <= 30)).sum() |
| 64 | + cross_70_up = ((rsi_valid.shift(1) < 70) & (rsi_valid >= 70)).sum() |
| 65 | +
|
| 66 | + results[symbol] = { |
| 67 | + 'bars': len(rsi_valid), |
| 68 | + 'rsi_stats': stats, |
| 69 | + 'current_params_35_65': { |
| 70 | + 'oversold_bars': int(oversold_35), |
| 71 | + 'overbought_bars': int(overbought_65), |
| 72 | + 'oversold_crossings': int(cross_35_down), |
| 73 | + 'overbought_crossings': int(cross_65_up), |
| 74 | + 'total_signals': int(cross_35_down + cross_65_up) |
| 75 | + }, |
| 76 | + 'industry_params_30_70': { |
| 77 | + 'oversold_bars': int(oversold_30), |
| 78 | + 'overbought_bars': int(overbought_70), |
| 79 | + 'oversold_crossings': int(cross_30_down), |
| 80 | + 'overbought_crossings': int(cross_70_up), |
| 81 | + 'total_signals': int(cross_30_down + cross_70_up) |
| 82 | + } |
| 83 | + } |
| 84 | +
|
| 85 | + print(f"{'='*60}") |
| 86 | + print(f"{symbol} - RSI(14) Analysis ({len(rsi_valid)} bars)") |
| 87 | + print(f"{'='*60}") |
| 88 | + print(f"\nRSI Statistics:") |
| 89 | + print(f" Min: {stats['min']:6.2f}") |
| 90 | + print(f" 25%: {stats['q25']:6.2f}") |
| 91 | + print(f" Mean: {stats['mean']:6.2f}") |
| 92 | + print(f" Median: {stats['median']:6.2f}") |
| 93 | + print(f" 75%: {stats['q75']:6.2f}") |
| 94 | + print(f" Max: {stats['max']:6.2f}") |
| 95 | + print(f" StdDev: {stats['std']:6.2f}") |
| 96 | +
|
| 97 | + print(f"\nCurrent Parameters (35/65):") |
| 98 | + print(f" Bars RSI ≤ 35: {oversold_35:3d} ({oversold_35/len(rsi_valid)*100:5.1f}%)") |
| 99 | + print(f" Bars RSI ≥ 65: {overbought_65:3d} ({overbought_65/len(rsi_valid)*100:5.1f}%)") |
| 100 | + print(f" Oversold crossings: {cross_35_down:3d}") |
| 101 | + print(f" Overbought crossings: {cross_65_up:3d}") |
| 102 | + print(f" TOTAL SIGNALS: {cross_35_down + cross_65_up:3d}") |
| 103 | +
|
| 104 | + print(f"\nIndustry Standard (30/70):") |
| 105 | + print(f" Bars RSI ≤ 30: {oversold_30:3d} ({oversold_30/len(rsi_valid)*100:5.1f}%)") |
| 106 | + print(f" Bars RSI ≥ 70: {overbought_70:3d} ({overbought_70/len(rsi_valid)*100:5.1f}%)") |
| 107 | + print(f" Oversold crossings: {cross_30_down:3d}") |
| 108 | + print(f" Overbought crossings: {cross_70_up:3d}") |
| 109 | + print(f" TOTAL SIGNALS: {cross_30_down + cross_70_up:3d}") |
| 110 | + print() |
| 111 | +
|
| 112 | +# Save results |
| 113 | +with open('analysis/rsi_quick_analysis.json', 'w') as f: |
| 114 | + json.dump(results, f, indent=2) |
| 115 | +
|
| 116 | +print(f"\n{'='*60}") |
| 117 | +print("DIAGNOSIS & RECOMMENDATIONS") |
| 118 | +print(f"{'='*60}\n") |
| 119 | +
|
| 120 | +total_signals_35_65 = sum(r['current_params_35_65']['total_signals'] for r in results.values()) |
| 121 | +total_signals_30_70 = sum(r['industry_params_30_70']['total_signals'] for r in results.values()) |
| 122 | +avg_rsi = np.mean([r['rsi_stats']['mean'] for r in results.values()]) |
| 123 | +
|
| 124 | +print(f"Root Cause Analysis:") |
| 125 | +print(f" • Total signals with current params (35/65): {total_signals_35_65}") |
| 126 | +print(f" • Total signals with industry params (30/70): {total_signals_30_70}") |
| 127 | +print(f" • Average RSI across all symbols: {avg_rsi:.2f}") |
| 128 | +print() |
| 129 | +
|
| 130 | +if total_signals_35_65 == 0: |
| 131 | + print("❌ CRITICAL: Current parameters generate ZERO signals!") |
| 132 | + print(" RSI thresholds (35/65) are too tight for this market data.") |
| 133 | + print() |
| 134 | +
|
| 135 | +if avg_rsi > 55: |
| 136 | + print("📈 Market Condition: Bullish bias (elevated RSI)") |
| 137 | + print(" RSI staying above 50 indicates strong uptrend") |
| 138 | + print() |
| 139 | +
|
| 140 | +print("Recommendations:") |
| 141 | +print(" 1. Switch to industry standard thresholds: 30/70") |
| 142 | +print(f" This would generate ~{total_signals_30_70} signals across all symbols") |
| 143 | +print() |
| 144 | +print(" 2. Consider strategy appropriateness:") |
| 145 | +print(" RSI mean-reversion may not suit strong trending markets") |
| 146 | +print() |
| 147 | +print(" 3. Alternative approaches:") |
| 148 | +print(" - Use momentum-following instead of mean-reversion") |
| 149 | +print(" - Add trend filter before RSI signals") |
| 150 | +print(" - Consider asymmetric thresholds (e.g., 25/75)") |
| 151 | +print() |
| 152 | +
|
| 153 | +print(f"Analysis saved to: analysis/rsi_quick_analysis.json") |
| 154 | +print("="*60) |
| 155 | +
|
| 156 | +EOF |
| 157 | + |
| 158 | +deactivate |
0 commit comments