forked from scikit-image/scikit-image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapply_parallel.py
106 lines (90 loc) · 3.63 KB
/
apply_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from math import ceil
from multiprocessing import cpu_count
__all__ = ['apply_parallel']
def _get_chunks(shape, ncpu):
"""Split the array into equal sized chunks based on the number of
available processors. The last chunk in each dimension absorbs the
remainder array elements if the number of CPUs does not divide evenly into
the number of array elements.
Examples
--------
>>> _get_chunks((4, 4), 4)
((2, 2), (2, 2))
>>> _get_chunks((4, 4), 2)
((2, 2), (4,))
>>> _get_chunks((5, 5), 2)
((2, 3), (5,))
>>> _get_chunks((2, 4), 2)
((1, 1), (4,))
"""
chunks = []
nchunks_per_dim = int(ceil(ncpu ** (1./len(shape))))
used_chunks = 1
for i in shape:
if used_chunks < ncpu:
regular_chunk = i // nchunks_per_dim
remainder_chunk = regular_chunk + (i % nchunks_per_dim)
if regular_chunk == 0:
chunk_lens = (remainder_chunk,)
else:
chunk_lens = ((regular_chunk,) * (nchunks_per_dim - 1) +
(remainder_chunk,))
else:
chunk_lens = (i,)
chunks.append(chunk_lens)
used_chunks *= nchunks_per_dim
return tuple(chunks)
def apply_parallel(function, array, chunks=None, depth=0, mode=None,
extra_arguments=(), extra_keywords={}):
"""Map a function in parallel across an array.
Split an array into possibly overlapping chunks of a given depth and
boundary type, call the given function in parallel on the chunks, combine
the chunks and return the resulting array.
Parameters
----------
function : function
Function to be mapped which takes an array as an argument.
array : numpy array
Array which the function will be applied to.
chunks : int, tuple, or tuple of tuples, optional
A single integer is interpreted as the length of one side of a square
chunk that should be tiled across the array. One tuple of length
``array.ndim`` represents the shape of a chunk, and it is tiled across
the array. A list of tuples of length ``ndim``, where each sub-tuple
is a sequence of chunk sizes along the corresponding dimension. If
None, the array is broken up into chunks based on the number of
available cpus. More information about chunks is in the documentation
`here <https://dask.pydata.org/en/latest/array-design.html>`_.
depth : int, optional
Integer equal to the depth of the added boundary cells. Defaults to
zero.
mode : {'reflect', 'symmetric', 'periodic', 'wrap', 'nearest', 'edge'}, optional
type of external boundary padding.
extra_arguments : tuple, optional
Tuple of arguments to be passed to the function.
extra_keywords : dictionary, optional
Dictionary of keyword arguments to be passed to the function.
Notes
-----
Numpy edge modes 'symmetric', 'wrap', and 'edge' are converted to the
equivalent `dask` boundary modes 'reflect', 'periodic' and 'nearest',
respectively.
"""
import dask.array as da
if chunks is None:
shape = array.shape
try:
ncpu = cpu_count()
except NotImplementedError:
ncpu = 4
chunks = _get_chunks(shape, ncpu)
if mode == 'wrap':
mode = 'periodic'
elif mode == 'symmetric':
mode = 'reflect'
elif mode == 'edge':
mode = 'nearest'
def wrapped_func(arr):
return function(arr, *extra_arguments, **extra_keywords)
darr = da.from_array(array, chunks=chunks)
return darr.map_overlap(wrapped_func, depth, boundary=mode).compute()