Skip to content

SakanaAI/ShinkaEvolve

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

6 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation


ShinkaEvolve: Towards Open-Ended and Sample-Efficient Program Evolution 🧬

ShinkaEvolve is a framework that combines Large Language Models (LLMs) with evolutionary algorithms to drive scientific discovery. By leveraging the creative capabilities of LLMs and the optimization power of evolutionary search, ShinkaEvolve enables automated exploration and improvement of scientific code. The system is inspired by the AI Scientist, AlphaEvolve and the Darwin Goedel Machine: It maintains a population of programs that evolve over generations, with an ensemble of LLMs acting as intelligent mutation operators that suggest code improvements.

The framework supports parallel evaluation of candidates locally or on a Slurm cluster. It maintains an archive of successful solutions, enabling knowledge transfer between different evolutionary islands. ShinkaEvolve is particularly well-suited for scientific tasks where there is a verifier available and the goal is to optimize performance metrics while maintaining code correctness and readability.

Documentation πŸ“

Guide Description What You'll Learn
πŸš€ Getting Started Installation, basic usage, and examples Setup, first evolution run, core concepts
πŸ““ Tutorial Notebook Interactive walkthrough of Shinka features Hands-on examples, configuration, best practices
βš™οΈ Configuration Comprehensive configuration reference All config options, optimization settings, advanced features
🎨 WebUI Interactive visualization and monitoring Real-time tracking, result analysis, debugging tools

Installation & Quick Start πŸš€

# Clone the repository
git clone https://github.com/SakanaAI/ShinkaEvolve
# Install uv if you haven't already
curl -LsSf https://astral.sh/uv/install.sh | sh

# Create environment and install Shinka
cd ShinkaEvolve
uv venv --python 3.11
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
uv pip install -e .

# Run your first evolution experiment
shinka_launch variant=circle_packing_example

For detailed installation instructions and usage examples, see the Getting Started Guide.

Examples πŸ“–

Example Description Environment Setup
β­• Circle Packing Optimize circle packing to maximize radii. LocalJobConfig
πŸ€– Agent Design Design agent scaffolds for math tasks. LocalJobConfig
🎯 ALE-Bench Code optimization for ALE-Bench tasks. LocalJobConfig
✨ Novelty Generator Generate creative, surprising outputs (e.g., ASCII art). LocalJobConfig

shinka Run with Python API 🐍

For the simplest setup with default settings, you only need to specify the evaluation program:

from shinka.core import EvolutionRunner, EvolutionConfig
from shinka.database import DatabaseConfig
from shinka.launch import LocalJobConfig

# Minimal config - only specify what's required
job_config = LocalJobConfig(eval_program_path="evaluate.py")
db_config = DatabaseConfig()
evo_config = EvolutionConfig(init_program_path="initial.py",)

# Run evolution with defaults
runner = EvolutionRunner(
    evo_config=evo_config,
    job_config=job_config,
    db_config=db_config,
)
runner.run()
EvolutionConfig Parameters (click to expand)
Key Default Value Type Explanation
task_sys_msg None Optional[str] System message describing the optimization task
patch_types ["diff"] List[str] Types of patches to generate: "diff", "full", "cross"
patch_type_probs [1.0] List[float] Probabilities for each patch type
num_generations 10 int Number of evolution generations to run
max_parallel_jobs 2 int Maximum number of parallel evaluation jobs
max_patch_resamples 3 int Max times to resample a patch if it fails
max_patch_attempts 5 int Max attempts to generate a valid patch
job_type "local" str Job execution type: "local", "slurm_docker", "slurm_conda"
language "python" str Programming language for evolution
llm_models ["azure-gpt-4.1-mini"] List[str] List of LLM models for code generation
llm_dynamic_selection None Optional[Union[str, BanditBase]] Dynamic model selection strategy
llm_dynamic_selection_kwargs {} dict Kwargs for dynamic selection
llm_kwargs {} dict Additional kwargs for LLM calls
meta_rec_interval None Optional[int] Interval for meta-recommendations
meta_llm_models None Optional[List[str]] LLM models for meta-recommendations
meta_llm_kwargs {} dict Kwargs for meta-recommendation LLMs
meta_max_recommendations 5 int Max number of meta-recommendations
embedding_model None Optional[str] Model for code embeddings
init_program_path "initial.py" Optional[str] Path to initial program to evolve
results_dir None Optional[str] Directory to save results (auto-generated if None)
max_novelty_attempts 3 int Max attempts for novelty generation
code_embed_sim_threshold 1.0 float Similarity threshold for code embeddings
novelty_llm_models None Optional[List[str]] LLM models for novelty judgment
novelty_llm_kwargs {} dict Kwargs for novelty LLMs
use_text_feedback False bool Whether to use text feedback in evolution
DatabaseConfig Parameters (click to expand)
Key Default Value Type Explanation
db_path None Optional[str] Database file path (auto-generated if None)
num_islands 4 int Number of evolution islands for diversity
archive_size 100 int Size of program archive per island
elite_selection_ratio 0.3 float Proportion of elite programs for inspiration
num_archive_inspirations 5 int Number of archive programs to use as inspiration
num_top_k_inspirations 2 int Number of top-k programs for inspiration
migration_interval 10 int Generations between island migrations
migration_rate 0.1 float Proportion of island population to migrate
island_elitism True bool Keep best programs on their original islands
enforce_island_separation True bool Enforce full separation between islands
parent_selection_strategy "power_law" str Parent selection: "weighted", "power_law", "beam_search"
exploitation_alpha 1.0 float Power-law exponent (0=uniform, 1=power-law)
exploitation_ratio 0.2 float Chance to pick parent from archive
parent_selection_lambda 10.0 float Sharpness of sigmoid for weighted selection
num_beams 5 int Number of beams for beam search selection
JobConfig Parameters (click to expand)

LocalJobConfig (for local execution):

Key Default Value Type Explanation
eval_program_path "evaluate.py" Optional[str] Path to evaluation script
extra_cmd_args {} Dict[str, Any] Additional command line arguments
time None Optional[str] Time limit for job execution
conda_env None Optional[str] Conda environment to run jobs in

SlurmDockerJobConfig (for SLURM with Docker):

Key Default Value Type Explanation
eval_program_path "evaluate.py" Optional[str] Path to evaluation script
extra_cmd_args {} Dict[str, Any] Additional command line arguments
image "ubuntu:latest" str Docker image to use
image_tar_path None Optional[str] Path to Docker image tar file
docker_flags "" str Additional Docker flags
partition "gpu" str SLURM partition to use
time "01:00:00" str Job time limit
cpus 1 int Number of CPUs to request
gpus 1 int Number of GPUs to request
mem "8G" Optional[str] Memory to request

SlurmCondaJobConfig (for SLURM with Conda):

Key Default Value Type Explanation
eval_program_path "evaluate.py" Optional[str] Path to evaluation script
extra_cmd_args {} Dict[str, Any] Additional command line arguments
conda_env "" str Conda environment name
modules [] Optional[List[str]] Environment modules to load
partition "gpu" str SLURM partition to use
time "01:00:00" str Job time limit
cpus 1 int Number of CPUs to request
gpus 1 int Number of GPUs to request
mem "8G" Optional[str] Memory to request

Evaluation Setup & Initial Solution πŸƒ

To use EvolutionRunner, you need two key files: The evaluate.py script defines how to test and score your programs - it runs multiple evaluations, validates results, and aggregates them into metrics that guide the shinka evolution loop. The initial.py file contains your starting solution with the core algorithm that will be iteratively improved by LLMs across generations.

evaluate.py - Evaluation Script

from shinka.core import run_shinka_eval

def main(program_path: str,
         results_dir: str):
    metrics, correct, err = run_shinka_eval(
        program_path=program_path,
        results_dir=results_dir,
        experiment_fn_name="run_experiment",
        num_runs=3, # Multi-evals to aggreg.
        get_experiment_kwargs=get_kwargs,
        aggregate_metrics_fn=aggregate_fn,
        validate_fn=validate_fn,  # Optional
    )

def get_kwargs(run_idx: int) -> dict:
    return {"param1": "value", "param2": 42}

def aggregate_fn(results: list) -> dict:
    score = results[0]
    text = results[1]
    return {
        "combined_score": float(score),
        "public": {...},  # shinka-visible
        "private": {...},  # shinka-invisible
        "extra_data": {...},  # store as pkl
        "text_feedback": text,  # str fb
    }

if __name__ == "__main__":
    # argparse program path & dir
    main(program_path, results_dir)

initial.py - Starting Solution

# EVOLVE-BLOCK-START
def advanced_algo():
    # This will be evolved
    return solution
# EVOLVE-BLOCK-END

def run_experiment(**kwargs):
    """Main called by evaluator"""
    result = solve_problem(kwargs)
    return result

def solve_problem(params):
    solution = advanced_algo()
    return solution

Key Points:

  • Eval name matches experiment_fn_name
  • Use EVOLVE-BLOCK-START and EVOLVE-BLOCK-END to mark evolution sections
  • Return format matches validation expectations
  • Dependencies must be available in env
  • Results can be unpacked for metrics
  • Auto-stores several results in results_dir
  • Can add text feedback in shinka loop
  • Higher combined_score values indicate better performance (maximization)

shinka Launcher with Hydra πŸš€

shinka Launcher utilizes Hydra to configure and launch evolutionary experiments effortlessly. It supports concise configuration via Hydra's powerful override syntax, making it easy to manage and iterate scientific explorations.

# Run with pre-configured variant
shinka_launch variant=circle_packing_example

# Run with custom parameters
shinka_launch \
    task=circle_packing \
    database=island_large \
    evolution=small_budget \
    cluster=local \
    evo_config.num_generations=20

For comprehensive configuration options and advanced usage, see the Configuration Guide.

Interactive WebUI 🎨

Monitor your evolution experiments in real-time with Shinka's interactive web interface! The WebUI provides live visualization of the evolutionary process, genealogy trees, and performance metrics.

WebUI Screenshot

Quick Start

Launch the WebUI alongside your evolution experiment:

# Start your evolution experiment
shinka_launch variant=circle_packing_example

# In another terminal, launch the WebUI
shinka_visualize --port 8888 --open

For detailed WebUI documentation, see the WebUI Guide.

Related Open-Source Projects πŸ§‘β€πŸ”§

  • OpenEvolve: An open-source implementation of AlphaEvolve
  • LLM4AD: A Platform for Algorithm Design with Large Language Model

Citation ✍️

If you use ShinkaEvolve in your research, please cite it as follows:

@article{lange2025shinka,
  title={ShinkaEvolve: Towards Open-Ended And Sample-Efficient Program Evolution},
  author={Lange, Robert Tjarko and Imajuku, Yuki and Cetin, Edoardo},
  journal={arXiv preprint arXiv:2509.19349},
  year={2025}
}

About

ShinkaEvolve: Towards Open-Ended and Sample-Efficient Program Evolution

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published