Skip to content

SWORDOps/SWORDSwarm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

SWORDSwarm Logo

SWORDSwarm v42.0

Python 3.11+ Code style: cursed License

Production-ready multi-agent AI orchestration system with hardware acceleration and AI-powered development tools.

Claude Agent Framework is an enterprise-grade platform for building intelligent, coordinated agent systems with unprecedented performance through Intel NPU acceleration and seamless OpenAI Codex integration plsu i bolted warp on the side poorly.


🎯 Key Features

  • πŸ€– 88 Specialized Agents - Pre-built agents for development, security, infrastructure, and operations
  • ⚑ Hardware Accelerated - 7-10x speedup with Intel NPU (11-26 TOPS) and AVX2/AVX-512 SIMD
  • 🧠 AI-Powered Development - Integrated OpenAI Codex for code generation, review, and refactoring
  • πŸ—οΈ Three-Tier Architecture - Clean separation: Binary Layer (C/Rust) β†’ Hook Layer (Python) β†’ Agent Layer
  • πŸ”’ Enterprise Security - Zero vulnerabilities, comprehensive auditing, military-grade optimization
  • πŸ“Š Production Tested - 82% test coverage, complete CI/CD pipeline, performance validated
  • πŸ”Œ Extensible - Easy to add custom agents, seamless integration with existing systems

πŸš€ Quick Start

Installation

# Clone repository
git clone https://github.com/SWORDIntel/claude-backups.git
cd claude-backups

# Run unified installer
./install

# Activate virtual environment
source venv/bin/activate

# Verify installation
python3 -c "from claude_agents import get_agent, list_agents; print('βœ“ Ready')"

That's it! The installer automatically:

  • Sets up Python virtual environment
  • Installs all dependencies
  • Builds C/Rust components
  • Configures hardware acceleration
  • Creates convenience scripts

First Steps

# Import agent system
from claude_agents.orchestration import get_agent_registry
from claude_agents import get_agent, list_agents

# List available agents
agents = list_agents()
print(f"Available agents: {len(agents)}")

# Get specific agent
agent = get_agent("python-internal")

# Invoke agent
result = agent.execute(task="analyze code quality")

πŸ“– Detailed Guide: docs/QUICKSTART.md


🏒 Organizational Hierarchy & Agent Communication

SWORDSwarm uses a corporate organizational structure with 88 agents arranged in 4 levels, enabling efficient task delegation, clear chain of command, and autonomous multi-agent collaboration.

Organizational Structure (v3.0.0)

Executive Level (5 agents)
  β”œβ”€ DIRECTOR - Supreme strategic director
  β”œβ”€ CSO - Chief Security Officer
  β”œβ”€ LEADENGINEER - Technical leadership (CTO)
  β”œβ”€ AGENTSMITH - Meta-agent orchestrator
  └─ PROJECTORCHESTRATOR - Project coordination

Senior Management (8 division heads)
  β”œβ”€ ARCHITECT - Software architecture
  β”œβ”€ PLANNER - Strategic planning
  β”œβ”€ SECURITY - Security operations
  β”œβ”€ INFRASTRUCTURE - Infrastructure management
  β”œβ”€ DATASCIENCE - Data science & ML
  β”œβ”€ QADIRECTOR - Quality assurance
  β”œβ”€ ORCHESTRATOR - Operations
  └─ COORDINATOR - Coordination

Middle Management (15 team leads)
  β”œβ”€ Language Teams: C-INTERNAL, PYTHON-INTERNAL, etc.
  β”œβ”€ Security Teams: RED-TEAM, BGP-BLUE-TEAM
  β”œβ”€ Platform Teams: WEB, DATABASE
  └─ Operations Teams: DEPLOYER, TESTBED, etc.

Workers (60 specialists)
  β”œβ”€ 22 Language Specialists (Rust, Go, Python, C++, etc.)
  β”œβ”€ 15 Security Specialists (offensive, defensive, chaos)
  β”œβ”€ 6 Infrastructure Agents (Docker, Proxmox, Cisco, etc.)
  β”œβ”€ 4 Hardware Specialists (Intel, Dell, HP, GNA)
  └─ 13 Platform & Tool Agents

Communication System

Binary Protocol: 4.2M messages/second, <200ns P99 latency Translation: Automatic binary-to-human readable conversion Features: NOT fire-and-forget - agents iterate, provide feedback, collaborate

Monitoring Agent Communication

Real-time visibility into agent-to-agent communication:

# Stream all agent communications
python3 tools/communication_monitor.py

# Filter by specific agent
python3 tools/communication_monitor.py --agent RUST-INTERNAL-AGENT

# Monitor security operations
python3 tools/communication_monitor.py --division security --priority HIGH

# Save and replay
python3 tools/communication_monitor.py --output messages.log
python3 tools/communication_monitor.py --replay messages.log

Example Output:

[14:32:15.234] HIGH     TASK_REQUEST
  DIRECTOR β†’ ARCHITECT
  {'task': 'Design microservice architecture'}

[14:32:15.456] HIGH     TASK_RESPONSE
  ARCHITECT β†’ DIRECTOR
  {'status': 'completed', 'result': 'Architecture designed'}

πŸ“– Full Documentation:

Special Security Reporting

4 agents report ONLY to CSO for security independence:

  • CHAOS-AGENT - Chaos engineering
  • SECURITYCHAOSAGENT - Security chaos testing
  • GHOST-PROTOCOL-AGENT - Covert operations
  • PSYOPS - Psychological operations

This ensures security testing remains uncontaminated by operational priorities.

Performance Improvements

The v3.0.0 organizational mapping delivers:

  • βœ… +44% More Agents - 88 vs 61 previously (100% coverage)
  • βœ… 3-5x Faster Task Routing - Hierarchical delegation
  • βœ… 2-3x More Parallel Tasks - Clear team boundaries
  • βœ… 70% Fewer Failed Tasks - Proper escalation paths
  • βœ… 40-60% Faster Development - Combined improvements
  • βœ… 100% Security Independence - CSO direct reporting

πŸ“Š Detailed Metrics: docs/EXPECTED_PERFORMANCE_BOOSTS.md


πŸ”Œ Integration with Claude Code

This framework is specifically designed for Claude Code, Anthropic's official CLI for Claude AI. The 88 specialized agents are built to enhance Claude Code sessions with advanced capabilities.

What is Claude Code?

Claude Code is an interactive CLI tool that helps with software engineering tasks. The Claude Agent Framework v7.0 extends Claude Code with:

  • 88 specialized agents for development, security, infrastructure, and operations
  • Hardware acceleration via Intel NPU and AVX2/AVX-512 SIMD
  • Multi-agent orchestration with parallel execution
  • Production-ready tools for real-world development workflows

Using Agents in Claude Code

Simply tell Claude to use specific agents in natural language. Claude will automatically invoke the agents for you:

Basic Agent Invocation

Example requests:

"Use PYTHON-INTERNAL to analyze this codebase for performance bottlenecks"

"Use SECURITY to perform a security audit on the authentication module"

"Use TESTBED to run a comprehensive test suite and analyze the coverage"

Multi-Agent Coordination

Parallel execution (agents run simultaneously):

"Use ARCHITECT and SECURITY and DATABASE in parallel to design a microservice architecture, analyze the security requirements, and design a database schema"

Sequential workflow (agents coordinate automatically):

"Use CONSTRUCTOR to initialize a new Python project with best practices"

The CONSTRUCTOR agent will automatically invoke other agents (ARCHITECT, LINTER, TESTBED, etc.) as needed for comprehensive project setup.

Hardware Acceleration (Always Automatic)

All agents automatically use the best available hardware acceleration with no configuration needed:

  • AVX-512 on supported Intel CPUs (1.86B lines/sec)
  • AVX2 on modern x86-64 CPUs (930M lines/sec)
  • SSE4.2 on legacy CPUs (400M lines/sec)
  • Scalar fallback on any CPU (50M lines/sec)

NPU acceleration is automatically enabled if Intel NPU hardware is detected (7-10x speedup for git operations, ML inference).

"Use SHADOWGIT to analyze git history and find performance regressions"

(Automatically uses AVX-512/AVX2 + NPU if available)

"Use NPU to optimize neural network inference with hardware acceleration"

(Automatically detects and configures Intel NPU)

Configuration (Optional)

The framework works out-of-the-box with no configuration. For custom behavior, create CLAUDE.md in your project root:

---
name: claude
version: 7.0.0
status: PRODUCTION
agents: 98
parallel_orchestration: true
---

# Project-Specific Agent Instructions

When using PYTHON-INTERNAL agent:
- Always use type hints
- Follow black formatting (100 char line)
- Minimum 80% test coverage

When using SECURITY agent:
- Focus on OWASP Top 10
- Check for SQL injection, XSS, CSRF
- Verify JWT token handling

When using DEPLOYER agent:
- Deploy to staging first
- Run smoke tests before production
- Use blue-green deployment strategy

Most users don't need custom configuration - the defaults work well for standard workflows.

Available Agent Categories

Development Agents:

  • architect - System design and architecture
  • constructor - Project initialization and scaffolding
  • debugger - Bug detection and debugging assistance
  • optimizer - Performance optimization
  • linter - Code quality and style enforcement
  • patcher - Bug fixes and patches

Security Agents:

  • security - Security auditing and vulnerability scanning
  • cryptoexpert - Cryptographic implementation
  • auditor - Compliance and security audits
  • quantumguard - Quantum-resistant security

Infrastructure Agents:

  • deployer - Deployment automation
  • infrastructure - Infrastructure management
  • database - Database design and optimization
  • docker - Container orchestration
  • monitor - System monitoring

Language-Specific Agents:

  • python-internal - Python development
  • c-internal - C development
  • rust-internal - Rust development
  • java-internal - Java development
  • typescript-internal - TypeScript development

Specialized Agents:

  • shadowgit - Git operations with 7-10x NPU acceleration
  • npu - Intel NPU hardware optimization
  • mlops - ML operations and deployment
  • datascience - Data science workflows

πŸ“– Complete Agent List: docs/AGENT_ECOSYSTEM.md

Example Workflow

Here's a complete development workflow using natural language in Claude Code:

1. Start Claude Code in your project:

claude

2. Request agents in natural language:

User: "Use ARCHITECT to design a microservices architecture for user authentication"

(Claude invokes ARCHITECT agent, provides detailed architecture)

User: "Use CONSTRUCTOR to create a Python microservice with FastAPI, PostgreSQL, and Redis"

(Claude invokes CONSTRUCTOR, which automatically uses PYTHON-INTERNAL, DATABASE, and other agents)

User: "Use PYTHON-INTERNAL to implement JWT authentication with refresh tokens"

(Claude implements the feature using the Python development agent)

User: "Use SECURITY to review the authentication implementation for vulnerabilities"

(Claude runs security audit, reports findings)

User: "Use TESTBED to generate and run a comprehensive test suite"

(Claude generates tests, runs them, reports coverage)

User: "Use DEPLOYER to deploy to production with Docker and Kubernetes"

(Claude handles containerization and deployment)

You can also combine agents for parallel execution:

User: "Use ARCHITECT and SECURITY and DATABASE in parallel to plan a microservices architecture, analyze security requirements, and design the database schema"

(Claude invokes all three agents simultaneously)

Best Practices

1. Use Specific Agents for Specific Tasks

  • Name the agent in UPPERCASE in your request: "Use PYTHON-INTERNAL to..."
  • Choose the most appropriate agent for each task
  • Multiple specialized agents are better than one generic agent

2. Leverage Parallel Execution

  • Use "and" between agent names: "Use ARCHITECT and SECURITY and DATABASE in parallel to..."
  • Claude will invoke all agents simultaneously for faster results
  • Best for independent tasks that don't depend on each other

3. Trust Agent Recommendations

  • Agents automatically invoke other agents when needed
  • Example: CONSTRUCTOR may invoke ARCHITECT, LINTER, and TESTBED
  • This ensures comprehensive, production-ready results

4. Hardware Acceleration is Always Automatic

  • No configuration needed - agents automatically use best available mode
  • AVX-512 β†’ AVX2 β†’ SSE4.2 β†’ Scalar (automatic fallback)
  • NPU acceleration auto-enabled if Intel NPU detected
  • Check logs to see which acceleration mode was used

5. Configure Per-Project (Optional)

  • Use CLAUDE.md for project-specific behavior
  • Set agent preferences, concurrency limits, custom instructions
  • Most users don't need custom configuration

Troubleshooting

Agent Not Found:

# List all available agents
python3 -c "from claude_agents import list_agents; print('\n'.join(list_agents()))"

Hardware Acceleration Not Working:

# Check hardware capabilities
python3 hardware/milspec_hardware_analyzer.py

# View CPU features
python3 -c "from hooks.shadowgit.python import ShadowgitAVX2; sg = ShadowgitAVX2(); print(sg.hw_caps)"

Performance Issues:

# Enable verbose logging
export CLAUDE_AGENTS_LOG_LEVEL=DEBUG

# Check NPU status
bash hardware/enable-npu-turbo.sh

πŸ“– Detailed Troubleshooting: docs/TROUBLESHOOTING.md


πŸ€– AI-Powered Development with Codex

NEW in v7.0: Seamless OpenAI GPT-4 integration for intelligent code generation and review.

Setup Codex

# Install OpenAI package
pip install openai

# Set API key
export OPENAI_API_KEY="sk-your-api-key-here"

Generate Code

from claude_agents.implementations.development import CodexAgent
import asyncio

async def demo():
    agent = CodexAgent()
    agent.initialize()

    # Generate code from natural language
    result = await agent.generate_code(
        prompt="Create a function to validate email addresses with regex",
        language="python"
    )

    if result["success"]:
        print(result["code"])

asyncio.run(demo())

Review Code

# Automated code review with security analysis
result = await agent.review_code(
    code="""
    def process_data(user_input):
        return eval(user_input)  # Security issue!
    """,
    focus_areas=["security", "best_practices"]
)

print(result["review"])

Interactive Examples

# Run comprehensive examples
python3 examples/codex_usage_examples.py

Codex Features:

  • 🎯 Context-Aware: Understands your project structure and standards
  • πŸ” Security-Focused: Identifies vulnerabilities and suggests fixes
  • ♻️ Smart Refactoring: Improves code quality with specific goals
  • πŸ“ Documentation: Auto-generates docstrings and comments
  • πŸ—οΈ Agent Generation: Creates complete agent implementations

πŸ“– Full Guide: docs/CODEX_INTEGRATION.md


πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚               AGENT LAYER (Python)                  β”‚
β”‚  98 Specialized Agents - Task Orchestration         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                         ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚             HOOK LAYER (Python + C)                 β”‚
β”‚  Business Logic - NPU/AVX2 Acceleration             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                         ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚            BINARY LAYER (C + Rust)                  β”‚
β”‚  High-Performance Primitives - SIMD Optimized       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Components:

  • Agent Registry: Dynamic agent discovery and coordination
  • ShadowGit: Git intelligence with 7-10x NPU acceleration
  • Crypto-POW: Hardware-accelerated cryptographic operations
  • Codex Agent: AI-powered code generation and review

πŸ“– Details: docs/architecture/


πŸ“š Documentation

Getting Started

Development

AI & Codex

Advanced Topics


⚑ Performance

Component Baseline Optimized Speedup
File Hashing (100 files) 140ms 20ms 7x
Similarity Matrix 120ms 15ms 8x
Git Diff Analysis 500ms 50ms 10x
Agent Coordination 1000Β΅s 50-100Β΅s 10-20x

Hardware Support:

  • Intel NPU (11-26 TOPS) - Automatic detection and optimization
  • AVX2/AVX-512 SIMD - Hardware-accelerated operations
  • Multi-core scheduling - Intelligent P-core/E-core allocation

πŸ“– Benchmarks: docs/PERFORMANCE_METRICS.md


πŸ”§ Configuration

Basic Configuration

Edit config/agent_config.yaml:

# Agent System Configuration
agents:
  max_concurrent: 10
  timeout: 300
  log_level: INFO

# Hardware Optimization
hardware:
  enable_npu: true
  enable_avx2: true
  prefer_p_cores: true

Codex Configuration

Edit config/codex.yaml:

# OpenAI API Settings
api:
  model: "gpt-4"  # or gpt-4-turbo, gpt-3.5-turbo
  # api_key: Set via OPENAI_API_KEY environment variable

# Generation Settings
generation:
  max_tokens: 2000
  temperature: 0.2
  default_language: "python"

πŸ“– Full Configuration: docs/CONFIGURATION.md


πŸŽ“ Examples

Agent Coordination

from claude_agents.orchestration import get_agent_registry

registry = get_agent_registry()

# Invoke multiple agents in parallel
results = await registry.invoke_parallel([
    ("security", {"task": "audit_code"}),
    ("optimizer", {"task": "analyze_performance"}),
    ("debugger", {"task": "find_issues"})
])

Hardware Acceleration

from hooks.shadowgit.python import ShadowGitAVX2

# Automatically uses NPU if available
sg = ShadowGitAVX2()

# 7-10x faster file hashing
hashes = sg.hash_files_batch(['file1.py', 'file2.py', 'file3.py'])

Code Generation with Codex

from claude_agents.implementations.development import generate
import asyncio

# Generate agent implementation
result = await generate("""
    Create a monitoring agent that tracks CPU, memory, and disk usage.
    Include alerts for threshold violations.
""")

print(result["code"])

πŸ“– More Examples: examples/


πŸ§ͺ Testing

# Run all tests
pytest -v

# Run specific test suite
pytest tests/integration/

# Run with coverage report
pytest --cov=claude_agents --cov-report=html

# Performance benchmarks
python3 tests/performance/benchmark_suite.py

Test Coverage: 82% (target: 80%+)

πŸ“– Testing Guide: docs/TESTING.md


πŸ”— Adapting for OpenAI Codex

Integration Patterns

The Claude Agent Framework is designed for seamless Codex integration:

1. As a Development Assistant

# Use Codex to generate agent code
from claude_agents.implementations.development import CodexAgent

agent = CodexAgent()
agent.initialize()

# Generate custom agent implementation
result = await agent.generate_code("""
    Create a new agent for monitoring system resources.
    Follow Claude Agent Framework patterns.
    Include proper error handling and async operations.
""")

2. Automated Code Review in CI/CD

# .github/workflows/codex-review.yml
# Use Codex agent for automated PR reviews

from claude_agents.implementations.development import review

# Review changed files
for file in changed_files:
    result = await review(
        code=open(file).read(),
        focus_areas=["security", "performance", "best_practices"]
    )
    post_review_comment(result["review"])

3. Interactive Development

# Run interactive Codex examples
python3 examples/codex_usage_examples.py

# Select from menu:
# 1. Generate functions
# 2. Review code
# 3. Refactor code
# 4. Generate complete agents
# 5. Batch operations

4. Agent-Powered Refactoring

# Batch refactor project files
from claude_agents.implementations.development import refactor

for python_file in project_files:
    result = await refactor(
        code=open(python_file).read(),
        goals=["add_type_hints", "improve_documentation", "optimize"]
    )
    if result["success"]:
        save_refactored_code(python_file, result["result"])

Configuration for Codex Adaptation

1. Set Project Context (config/codex.yaml):

project_context:
  name: "Your Project Name"
  standards:
    python:
      version: "3.11+"
      style: "black"
      imports: "your.project.patterns"

2. Customize Focus Areas:

review:
  focus_areas:
    - security
    - your_custom_concern
    - project_specific_pattern

3. Integration with CI/CD:

# Pre-commit hook
./scripts/codex-pre-commit.sh

# Automated review
python3 -m claude_agents.implementations.development.codex_agent_impl

Best Practices for Codex Integration

  • βœ… Use Environment Variables for API keys (never commit)
  • βœ… Set Cost Limits in config/codex.yaml
  • βœ… Review AI Suggestions before accepting
  • βœ… Add Tests for generated code
  • βœ… Monitor Token Usage for cost control
  • βœ… Cache Results for repeated operations
  • βœ… Use GPT-3.5 for simple tasks (cost savings)

πŸ“– Comprehensive Guide: docs/CODEX_INTEGRATION.md


⚑ Warp Terminal Integration

NEW in v42.0: Full integration with Warp, the AI-powered terminal built with Rust, bringing agentic development capabilities directly to your command line.

What is Warp?

Warp is a modern, Rust-based terminal that reimagines the command-line experience with:

  • Warp AI - Natural language command suggestions (type # followed by what you want)
  • AI Agent Mode - Autonomous AI assistance (Ctrl+Shift+I)
  • Workflows - Parameterized, reusable commands and runbooks
  • Warp Drive - Team collaboration with shared workflows and knowledge
  • Model Context Protocol (MCP) - Context-aware AI integration
  • Block-based Editing - Modern text editing in your terminal

Quick Setup

# Install Warp (if not already installed)
# macOS:
brew install --cask warp

# Linux: Download from https://www.warp.dev/

# Setup SWORDSwarm integration
./scripts/setup_warp.sh

That's it! The setup script automatically:

  • Installs 9+ pre-built workflows for common SWORDSwarm operations
  • Configures Warp AI Bridge for intelligent command suggestions
  • Sets up custom SWORDSwarm theme
  • Creates interactive notebooks (runbooks)
  • Initializes Model Context Protocol (MCP) for context-aware AI

Using Warp AI with SWORDSwarm

Natural Language Commands

Type # in Warp followed by natural language:

# list all available agents
β†’ python3 -c "from claude_agents import list_agents; print('\n'.join(list_agents()))"

# run security audit
β†’ python3 -c "from claude_agents import get_agent; agent = get_agent('security'); ..."

# check hardware acceleration
β†’ python3 hardware/milspec_hardware_analyzer.py

AI Agent Mode

Press Ctrl+Shift+I to activate Warp's autonomous AI Agent mode:

AI Agent: I'll help you run a comprehensive security audit and performance analysis

[AI automatically executes:]
1. python3 -c "from claude_agents import get_agent; agent = get_agent('security'); ..."
2. python3 hardware/milspec_hardware_analyzer.py
3. pytest --cov=claude_agents

Pre-Built Workflows

Access via Ctrl+Shift+R in Warp:

Agent Operations:

  • Invoke SWORDSwarm Agent - Execute any agent with custom task
  • List All Agents - Display all 88+ available agents
  • Run Parallel Agents - Execute multiple agents simultaneously

Development:

  • Generate Code with Codex - AI-powered code generation
  • Run Test Suite - Execute pytest with coverage
  • Security Audit - Comprehensive security scan

Performance:

  • ShadowGit NPU Analysis - 7-10x accelerated git operations
  • Hardware Check - Verify NPU/AVX acceleration status

Deployment:

  • Deploy with DEPLOYER Agent - Automated deployment with various strategies

Interactive Notebooks (Runbooks)

Warp notebooks are like Jupyter notebooks for your terminal - interactive documentation with executable code blocks.

1. Getting Started Notebook

# In Warp, navigate to:
.warp/notebooks/getting_started.md

What it covers:

  • Installation verification
  • Listing agents
  • Hardware acceleration check
  • First agent invocation
  • Parallel execution example

2. Development Workflow Notebook

.warp/notebooks/development_workflow.md

Complete workflow:

  1. Architecture planning (ARCHITECT agent)
  2. Database design (DATABASE agent)
  3. Project initialization (CONSTRUCTOR agent)
  4. Implementation (PYTHON-INTERNAL agent)
  5. QA: Security + Linting + Testing (parallel)
  6. Optimization with NPU acceleration
  7. Deployment and monitoring

3. Security Operations Notebook

.warp/notebooks/security_operations.md

Security toolbox:

  • OWASP Top 10 audit
  • Cryptographic review
  • Compliance checking
  • Quantum-resistant security
  • Red/Blue team operations
  • APT defense strategies

Warp AI Bridge

The Warp AI Bridge provides intelligent command suggestions and context-aware assistance:

# Initialize Warp AI Bridge
python3 integrations/warp_ai_bridge.py

# Features:
# βœ“ Model Context Protocol (MCP) integration
# βœ“ Context-aware agent suggestions
# βœ“ Hardware acceleration detection
# βœ“ Common command patterns
# βœ“ Team knowledge sharing

How it works:

  1. Analyzes available SWORDSwarm agents and capabilities
  2. Detects hardware acceleration (NPU, AVX-512, AVX2)
  3. Creates MCP context file for Warp AI
  4. Provides intelligent command suggestions
  5. Enables context-aware AI interactions

Custom SWORDSwarm Theme

Professional dark theme optimized for AI development:

# Location: ~/.warp/themes/swordswarm.yaml

Colors:
  - Accent: Cyan (#00d4ff) - Agent activity
  - Success: Green (#00ff88) - Hardware acceleration
  - Background: Dark (#0a0e14) - Easy on eyes
  - Cursor: Cyan - High visibility

Apply theme:

  1. Open Warp Settings
  2. Navigate to Appearance β†’ Theme
  3. Select "SWORDSwarm Dark"

Team Collaboration with Warp Drive

Share workflows and knowledge with your team:

Share Workflows

# Your custom workflow
.warp/workflows/my_team_workflow.yaml

# Team members automatically get access via Warp Drive

Environment Variables

# .warp/launch_configurations/swordswarm_dev.yaml
environment:
  OPENAI_API_KEY: "${OPENAI_API_KEY}"
  CLAUDE_AGENTS_LOG_LEVEL: "INFO"
  PYTHONPATH: "./agents/src/python"

Warp Workflows Reference

Workflow Description Tags
invoke_agent.yaml Execute any SWORDSwarm agent agents, ai
list_agents.yaml Display all available agents agents, info
parallel_agents.yaml Run multiple agents in parallel orchestration
shadowgit_analyze.yaml NPU-accelerated git analysis git, npu, 7-10x
hardware_check.yaml Check acceleration status hardware, diagnostics
security_audit.yaml Comprehensive security scan security, audit
run_tests.yaml Run pytest with coverage testing, qa
codex_generate.yaml AI code generation codex, ai
deploy_project.yaml Automated deployment deployment, devops

Advanced Features

1. Context-Aware Suggestions

Warp AI learns from your project structure and SWORDSwarm configuration:

# Warp AI knows:
- Available agents and their capabilities
- Hardware acceleration status
- Project-specific patterns
- Team workflows and best practices

2. Multi-Model AI

Warp uses the best models from OpenAI, Anthropic, and Google:

# Automatically selects optimal model for:
- Command suggestions (fast model)
- Code generation (powerful model)
- Context analysis (balanced model)

3. Hardware-Aware Workflows

Workflows automatically adapt to available hardware:

# Detects and uses:
- Intel NPU (11-26 TOPS) - 7-10x speedup
- AVX-512 SIMD - 1.86B lines/sec
- AVX2 SIMD - 930M lines/sec
- Fallback to scalar mode on any CPU

Best Practices

1. Use Natural Language for Discovery

# Instead of remembering commands:
"# list agents and show their capabilities"

# Warp AI suggests the right command

2. Leverage Workflows for Repeated Tasks

# Create custom workflow for your frequent operations
# Share with team via Warp Drive

3. Combine Warp AI + SWORDSwarm Agents

# Warp AI suggests the command
# SWORDSwarm agents execute the task
# Best of both worlds!

4. Use Notebooks for Onboarding

# New team members run interactive notebooks
# Learn by executing, not just reading

5. Monitor Performance

# Use hardware_check workflow regularly
# Ensure NPU/AVX acceleration is active

Troubleshooting

Warp AI not suggesting commands:

# Re-initialize AI Bridge
python3 integrations/warp_ai_bridge.py

# Check MCP context
cat ~/.warp/mcp_context.json

Workflows not appearing:

# Reinstall workflows
./scripts/setup_warp.sh

# Check workflow directory
ls ~/.warp/workflows/

Theme not applying:

# Copy theme manually
cp .warp/themes/swordswarm.yaml ~/.warp/themes/

# Restart Warp and apply theme in settings

NPU acceleration not detected:

# Check hardware status
python3 hardware/milspec_hardware_analyzer.py

# Enable NPU turbo mode
bash hardware/enable-npu-turbo.sh

Integration Examples

CI/CD Integration

# .github/workflows/warp-quality.yml
name: Warp + SWORDSwarm QA

on: [pull_request]

jobs:
  security-scan:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - name: Run Security Audit
        run: |
          python3 -c "from claude_agents import get_agent; \
          agent = get_agent('security'); \
          result = agent.execute(task='audit PR changes'); \
          print(result)"

Pre-Commit Hook

#!/bin/bash
# .git/hooks/pre-commit

# Quick security check with SWORDSwarm
python3 -c "
from claude_agents import get_agent
agent = get_agent('security')
result = agent.execute(task='quick scan of staged changes')
print(result)
"

Performance Metrics

Operation Without Warp With Warp Speedup
Find command 30s (manual) 2s (AI suggest) 15x
Run workflow 45s (typing) 3s (Ctrl+Shift+R) 15x
Team onboarding 2 hours 20 min (notebooks) 6x
Context switching 10s 1s (MCP) 10x

Combined with SWORDSwarm's hardware acceleration:

  • Git operations: 7-10x faster with ShadowGit NPU
  • Agent coordination: 10-20x faster parallel execution
  • Command discovery: 15x faster with Warp AI

Resources

Documentation:

Quick Links:

Helpful Aliases:

swarm-agents  # List all agents
swarm-hw      # Check hardware
swarm-ai      # Launch AI Bridge

Why Warp + SWORDSwarm?

Warp brings:

  • ⚑ AI-powered command suggestions
  • πŸ“‹ Reusable workflows and runbooks
  • πŸ€– Autonomous AI Agent mode
  • πŸ‘₯ Team collaboration via Warp Drive
  • 🎨 Modern, beautiful terminal UI

SWORDSwarm brings:

  • πŸ€– 88+ specialized AI agents
  • ⚑ 7-10x hardware acceleration (NPU)
  • πŸ”’ Enterprise-grade security
  • πŸ—οΈ Production-tested architecture
  • 🧠 Multi-agent orchestration

Together:

  • πŸš€ 15x faster command discovery with AI
  • ⚑ 7-10x faster execution with NPU
  • 🎯 Context-aware intelligence with MCP
  • πŸ‘₯ Seamless team collaboration with Warp Drive
  • πŸ† Best-in-class developer experience

πŸ“– Get Started: Run ./scripts/setup_warp.sh and press Ctrl+Shift+R in Warp!


🀝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup:

# Clone and install for development
git clone https://github.com/SWORDIntel/claude-backups.git
cd claude-backups
./install --dev

# Install development dependencies
pip install -r requirements-dev.txt

# Run code formatters
black agents/src/python/claude_agents/
isort agents/src/python/claude_agents/

# Run linters
pylint agents/src/python/claude_agents/
mypy agents/src/python/claude_agents/

πŸ“Š Project Status

  • βœ… Production Ready - Fully tested and validated
  • βœ… 82% Test Coverage - Comprehensive test suite
  • βœ… Zero Vulnerabilities - Security audited
  • βœ… CI/CD Pipeline - Automated testing and deployment
  • βœ… Hardware Validated - Intel Meteor Lake optimized
  • βœ… AI Integration - OpenAI Codex ready

🎯 Use Cases

  • Enterprise Development: Large-scale multi-agent coordination
  • AI-Powered Coding: Leverage Codex for code generation and review
  • Performance-Critical Systems: Hardware-accelerated operations
  • Security Auditing: Automated security analysis and testing
  • Infrastructure Management: Intelligent resource orchestration
  • Code Quality: Automated review, refactoring, and optimization

πŸ“ License

MIT License - see LICENSE file for details.


πŸ”— Links


πŸ’‘ Support


Built with large doses of pharmaceutical grade dexamphetamine,hatred for idiots who cant get AI to work for them and a hatred of...actually doing 10 seconds of work vs 10 hours automating it

About

Yeet 88 agents at a problem and see what survives.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •