-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_model.py
48 lines (37 loc) · 1.62 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
This example shows how to fit a model and evaluate its predictions.
"""
import pprint
from gluonts.dataset.repository.datasets import get_dataset, dataset_recipes
from gluonts.evaluation import make_evaluation_predictions, Evaluator
from gluonts.model.simple_feedforward import SimpleFeedForwardEstimator
from gluonts.mx.trainer import Trainer
if __name__ == "__main__":
print(f"datasets available: {dataset_recipes.keys()}")
# we pick m4_hourly as it only contains a few hundred time series
dataset = get_dataset("m4_hourly", regenerate=False)
estimator = SimpleFeedForwardEstimator(
prediction_length=dataset.metadata.prediction_length,
freq=dataset.metadata.freq,
trainer=Trainer(epochs=5, num_batches_per_epoch=10),
)
predictor = estimator.train(dataset.train)
forecast_it, ts_it = make_evaluation_predictions(
dataset.test, predictor=predictor, num_samples=100
)
agg_metrics, item_metrics = Evaluator()(
ts_it, forecast_it, num_series=len(dataset.test)
)
pprint.pprint(agg_metrics)