-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_video.py
85 lines (77 loc) · 4.61 KB
/
test_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import argparse
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
from torchvision.transforms import ToTensor, ToPILImage
from tqdm import tqdm
from model import Generator
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Test Single Video')
parser.add_argument('--upscale_factor', default=4, type=int, help='super resolution upscale factor')
parser.add_argument('--video_name', type=str, help='test low resolution video name')
parser.add_argument('--model_name', default='netG_epoch_4_100.pth', type=str, help='generator model epoch name')
opt = parser.parse_args()
UPSCALE_FACTOR = opt.upscale_factor
VIDEO_NAME = opt.video_name
MODEL_NAME = opt.model_name
model = Generator(UPSCALE_FACTOR).eval()
if torch.cuda.is_available():
model = model.cuda()
# for cpu
# model.load_state_dict(torch.load('epochs/' + MODEL_NAME, map_location=lambda storage, loc: storage))
model.load_state_dict(torch.load('epochs/' + MODEL_NAME))
videoCapture = cv2.VideoCapture(VIDEO_NAME)
fps = videoCapture.get(cv2.CAP_PROP_FPS)
frame_numbers = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
sr_video_size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH) * UPSCALE_FACTOR),
int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) * UPSCALE_FACTOR)
compared_video_size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH) * UPSCALE_FACTOR * 2 + 10),
int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) * UPSCALE_FACTOR + 10 + int(
int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH) * UPSCALE_FACTOR * 2 + 10) / int(
10 * int(int(
videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH) * UPSCALE_FACTOR) // 5 + 1)) * int(
int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH) * UPSCALE_FACTOR) // 5 - 9)))
output_sr_name = 'out_srf_' + str(UPSCALE_FACTOR) + '_' + VIDEO_NAME.split('.')[0] + '.avi'
output_compared_name = 'compare_srf_' + str(UPSCALE_FACTOR) + '_' + VIDEO_NAME.split('.')[0] + '.avi'
sr_video_writer = cv2.VideoWriter(output_sr_name, cv2.VideoWriter_fourcc('M', 'P', 'E', 'G'), fps, sr_video_size)
compared_video_writer = cv2.VideoWriter(output_compared_name, cv2.VideoWriter_fourcc('M', 'P', 'E', 'G'), fps,
compared_video_size)
# read frame
success, frame = videoCapture.read()
test_bar = tqdm(range(int(frame_numbers)), desc='[processing video and saving result videos]')
for index in test_bar:
if success:
image = Variable(ToTensor()(frame), volatile=True).unsqueeze(0)
if torch.cuda.is_available():
image = image.cuda()
out = model(image)
out = out.cpu()
out_img = out.data[0].numpy()
out_img *= 255.0
out_img = (np.uint8(out_img)).transpose((1, 2, 0))
# save sr video
sr_video_writer.write(out_img)
# make compared video and crop shot of left top\right top\center\left bottom\right bottom
out_img = ToPILImage()(out_img)
crop_out_imgs = transforms.FiveCrop(size=out_img.width // 5 - 9)(out_img)
crop_out_imgs = [np.asarray(transforms.Pad(padding=(10, 5, 0, 0))(img)) for img in crop_out_imgs]
out_img = transforms.Pad(padding=(5, 0, 0, 5))(out_img)
compared_img = transforms.Resize(size=(sr_video_size[1], sr_video_size[0]), interpolation=Image.BICUBIC)(
ToPILImage()(frame))
crop_compared_imgs = transforms.FiveCrop(size=compared_img.width // 5 - 9)(compared_img)
crop_compared_imgs = [np.asarray(transforms.Pad(padding=(0, 5, 10, 0))(img)) for img in crop_compared_imgs]
compared_img = transforms.Pad(padding=(0, 0, 5, 5))(compared_img)
# concatenate all the pictures to one single picture
top_image = np.concatenate((np.asarray(compared_img), np.asarray(out_img)), axis=1)
bottom_image = np.concatenate(crop_compared_imgs + crop_out_imgs, axis=1)
bottom_image = np.asarray(transforms.Resize(
size=(int(top_image.shape[1] / bottom_image.shape[1] * bottom_image.shape[0]), top_image.shape[1]))(
ToPILImage()(bottom_image)))
final_image = np.concatenate((top_image, bottom_image))
# save compared video
compared_video_writer.write(final_image)
# next frame
success, frame = videoCapture.read()