forked from lucasjinreal/yolov7_d2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tl_mlfow.py
182 lines (148 loc) · 5.75 KB
/
train_tl_mlfow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Training script using custom coco format dataset
what you need to do is simply change the img_dir and annotation path here
Also define your own categories.
"""
import os
from datetime import timedelta
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import (
DefaultTrainer,
default_argument_parser,
default_setup,
launch,
)
from detectron2.evaluation import COCOEvaluator
from detectron2.data import (
MetadataCatalog,
build_detection_train_loader,
DatasetCatalog,
)
from detectron2.data.datasets.coco import load_coco_json
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.datasets.coco import load_coco_json, register_coco_instances
from detectron2.utils import comm
from detectron2.engine import hooks, HookBase
from yolov7.config import add_yolo_config
from yolov7.data.dataset_mapper import MyDatasetMapper2
import mlflow
DATASET_ROOT = "./datasets/tl"
ANN_ROOT = os.path.join(DATASET_ROOT, "annotations")
TRAIN_PATH = os.path.join(DATASET_ROOT, "JPEGImages")
VAL_PATH = os.path.join(DATASET_ROOT, "JPEGImages")
TRAIN_JSON = os.path.join(ANN_ROOT, "annotations_coco_tls_train.json")
VAL_JSON = os.path.join(ANN_ROOT, "annotations_coco_tls_val.json")
register_coco_instances("tl_train", {}, TRAIN_JSON, TRAIN_PATH)
register_coco_instances("tl_val", {}, VAL_JSON, VAL_PATH)
class MLFlowSnapshotHook(HookBase):
"""
Same as :class:`detectron2.checkpoint.PeriodicCheckpointer`, but as a hook.
Note that when used as a hook,
it is unable to save additional data other than what's defined
by the given `checkpointer`.
It is executed every ``period`` iterations and after the last iteration.
"""
def after_train(self):
final_model_path = f"{self.trainer.cfg.OUTPUT_DIR}/model_final.pth"
mlflow.log_artifact(final_model_path, "model")
best_iter = (7 - len(str(self.trainer.best_iter))) * "0" + str(
self.trainer.best_iter
)
best_model_path = f"{self.trainer.cfg.OUTPUT_DIR}/model_{best_iter}.pth"
new_path = f"{self.trainer.cfg.OUTPUT_DIR}/model_best.pth"
os.rename(best_model_path, new_path)
mlflow.log_artifact(new_path, "model")
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return COCOEvaluator(dataset_name, output_dir=output_folder)
@classmethod
def build_train_loader(cls, cfg):
# return build_detection_train_loader(cfg, mapper=DatasetMapper(cfg, True))
# test our own dataset mapper to add more augmentations
return build_detection_train_loader(cfg, mapper=MyDatasetMapper2(cfg, True))
def build_hooks(self):
"""
Build a list of default hooks, including timing, evaluation,
checkpointing, lr scheduling, precise BN, writing events.
Returns:
list[HookBase]:
"""
cfg = self.cfg.clone()
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
ret = [
hooks.IterationTimer(),
hooks.LRScheduler(),
MLFlowSnapshotHook(),
]
if comm.is_main_process():
ret.append(
hooks.PeriodicCheckpointer(
self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD
)
)
def test_and_save_results():
self._last_eval_results = self.test(self.cfg, self.model)
results = self._last_eval_results["bbox"]
for k in results:
mlflow.log_metric(k, results[k], self.iter)
if results["AP"] > self.best_ap:
self.best_ap = results["AP"]
self.best_iter = self.iter
mlflow.log_metric("best_AP", self.best_ap, self.iter)
return self._last_eval_results
# Do evaluation after checkpointer, because then if it fails,
# we can use the saved checkpoint to debug.
ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))
if comm.is_main_process():
# Here the default print/log frequency of each writer is used.
# run writers in the end, so that evaluation metrics are written
ret.append(hooks.PeriodicWriter(self.build_writers(), period=20))
return ret
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_yolo_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
mlflow.set_experiment("traffic_light")
mlflow.start_run(run_name="yolox_s_tl")
mlflow.log_param("max_iter", cfg.SOLVER.MAX_ITER)
mlflow.log_param("images_per_batch", cfg.SOLVER.IMS_PER_BATCH)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.best_ap = 0
trainer.best_iter = 0
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
timeout=timedelta(50),
args=(args,),
)