@@ -39,7 +39,7 @@ def m_cosine(ra, dec, ra0, dec0):
39
39
)
40
40
41
41
42
- def visibilities_for_point_source (dist_uvw , l , m , flux ):
42
+ def visibilities_for_point_source (uvw_baselines , l , m , flux ):
43
43
"""
44
44
Simulate visibilities for point source.
45
45
@@ -52,7 +52,7 @@ def visibilities_for_point_source(dist_uvw, l, m, flux):
52
52
(uvw.lmn)
53
53
54
54
Args:
55
- dist_uvw (numpy.array): Array of 3-vectors representing
55
+ uvw_baselines (numpy.array): Array of 3-vectors representing
56
56
baselines in UVW space. Implicit units are
57
57
(dimensionless) multiples of wavelength, lambda.
58
58
[numpy shape: (n_uvw, 3), dtype=np.float_]
@@ -75,7 +75,7 @@ def visibilities_for_point_source(dist_uvw, l, m, flux):
75
75
# src - centre:
76
76
src_offset = - np .array ([l , m , src_n - 1 ])
77
77
78
- return flux * src_n * np .exp (- 2j * np .pi * np .dot (dist_uvw , src_offset ))
78
+ return flux * src_n * np .exp (- 2j * np .pi * np .dot (uvw_baselines , src_offset ))
79
79
80
80
81
81
def visibilities_for_source_list (pointing_centre , source_list , uvw ):
@@ -130,5 +130,5 @@ def add_gaussian_noise(noise_level, vis, seed=None):
130
130
"""
131
131
sigma = noise_level .to (u .Jansky ).value
132
132
rstate = np .random .RandomState (seed )
133
- noise = rstate .normal (loc = 0 , scale = sigma , size = (len (vis ),2 ))
134
- return vis + (noise [:,0 ] + 1j * noise [:,1 ])
133
+ noise = rstate .normal (loc = 0 , scale = sigma , size = (len (vis ), 2 ))
134
+ return vis + (noise [:, 0 ] + 1j * noise [:, 1 ])
0 commit comments