The NVIDIA Container Toolkit is required in order to use GPUs inside Docker containers.
Install Docker and NVIDIA Container Toolkit:
- https://docs.docker.com/engine/installation/
- Be sure to use Docker's repositories for the latest version of Docker.
- https://github.com/NVIDIA/nvidia-docker/blob/master/README.md
The Dockerfile
assumes a copy of the HEAVY.AI tarball is in the same directory as the Dockerfile and is named heavyai-latest-Linux-x86_64.tar.gz
.
To build the container, run:
mv heavyai-6.0.0-*-render.tar.gz heavyai-latest-Linux-x86_64.tar.gz
tar -xvf heavyai-latest-Linux-x86_64.tar.gz --strip-components=2 --no-anchored "docker/Dockerfile"
docker build .
where heavyai-6.0.0-*-render.tar.gz
is the path to the HEAVY.AI tarball.
The container image id will be output on the last line of the build
step. To assign a custom name and tag:
docker build -t heavyai/heavyai:v6.0.0 .
which will assign the name heavyai/heavyai
and the tag v6.0.0
to the image.
The data directory is at /var/lib/heavyai/storage
.
The config file lives at /var/lib/heavyai/heavy.conf
.
docker run -d \
--gpus all \
-p 6273:6273 \
--name heavyai \
-v /path/to/storage:/var/lib/heavyai \
heavyai/heavyai:v6.0.0
This starts the HEAVY.AI platform inside a container named heavyai
, and exposes the Immerse visualization client on port 6273..
Data will be persisted to the host directory /path/to/storage
.