Skip to content

Latest commit

 

History

History
 
 

docker

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Docker and NVIDIA Container Toolkit Installation

The NVIDIA Container Toolkit is required in order to use GPUs inside Docker containers.

Install Docker and NVIDIA Container Toolkit:

Building HEAVY.AI container

The Dockerfile assumes a copy of the HEAVY.AI tarball is in the same directory as the Dockerfile and is named heavyai-latest-Linux-x86_64.tar.gz.

To build the container, run:

mv heavyai-6.0.0-*-render.tar.gz heavyai-latest-Linux-x86_64.tar.gz
tar -xvf heavyai-latest-Linux-x86_64.tar.gz --strip-components=2 --no-anchored "docker/Dockerfile"
docker build .

where heavyai-6.0.0-*-render.tar.gz is the path to the HEAVY.AI tarball.

The container image id will be output on the last line of the build step. To assign a custom name and tag:

docker build -t heavyai/heavyai:v6.0.0 .

which will assign the name heavyai/heavyai and the tag v6.0.0 to the image.

Image layout

The data directory is at /var/lib/heavyai/storage.

The config file lives at /var/lib/heavyai/heavy.conf.

Running HEAVY.AI inside a container

docker run -d \
  --gpus all \
  -p 6273:6273 \
  --name heavyai \
  -v /path/to/storage:/var/lib/heavyai \
  heavyai/heavyai:v6.0.0

This starts the HEAVY.AI platform inside a container named heavyai, and exposes the Immerse visualization client on port 6273..

Data will be persisted to the host directory /path/to/storage.