The SIMEXP lab package for GCN
We recommend to install the package inside a python virtual environment.
python3 -m venv ~/.virtualenvs/gcn_package
source ~/.virtualenvs/gcn_package/bin/activate
Now install the package using pip.
git clone https://github.com/SIMEXP/gcn_package/edit/main/README.md
cd gcn_package
python3 -m pip install -r requirements.txt
Before creating the virtual environment, make sure you are using python3
.
module load python/3.8
- Tests for graph construction functions
- Tests for data util functions
- Tests for TimeWindows dataset
- Update notebook implementation to use src - (tutorial)
- Document functions
- Implement val loop
- Implement error throwing/valid input checks
- Implement padding in split timeseries
- timeseries length can be flexible
- window size won't need to be a divisor
- Command line tool for end-to-end training (optionnal)
- Auto-encoder (target is the input) or classification (label)
- agnostic timeseries-splitting and labelling:
- Read participant condition (label) from paticipant file or phenotype.
- Split and task-label based from task event file
- file should contain at least id
#Project Organization
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data <- Input data directory
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── gcn_package <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Modules for custom pytorch datasets & utils.
│ │ └── time_windows_dataset.py
│ │ └── data_loader.py
│ │ └── utils.py
│ │
│ ├── features <- Modules for building features from data.
│ │ └── graph_construction.py
│ │
│ ├── models <- Modules for different model architectures & utils to run them.
│ │ ├── gcn.py
│ │ └── utils.py
│ │
│ └── visualization <- Modules to create exploratory and results oriented visualizations
│ └── visualize.py
Project based on the cookiecutter data science project template. #cookiecutterdatascience