-
Notifications
You must be signed in to change notification settings - Fork 10
/
test_scpnet_comp.py
146 lines (116 loc) · 6.15 KB
/
test_scpnet_comp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding:utf-8 -*-
# author: Xinge, Xzy
# @file: train_cylinder_asym.py
import os
import time
import argparse
import sys
import numpy as np
import torch
from tqdm import tqdm
# from utils.metric_util import per_class_iu, fast_hist_crop
from dataloader.pc_dataset import get_SemKITTI_label_name
from builder import data_builder, model_builder, loss_builder
from config.config import load_config_data
from utils.load_save_util import load_checkpoint
import warnings
warnings.filterwarnings("ignore")
import yaml
def train2SemKITTI(input_label):
# delete 0 label (uses uint8 trick : 0 - 1 = 255 )
return input_label + 1
def main(args):
pytorch_device = torch.device('cuda:0')
config_path = args.config_path
configs = load_config_data(config_path)
dataset_config = configs['dataset_params']
train_dataloader_config = configs['train_data_loader']
val_dataloader_config = configs['val_data_loader']
val_batch_size = val_dataloader_config['batch_size']
train_batch_size = train_dataloader_config['batch_size']
model_config = configs['model_params']
train_hypers = configs['train_params']
grid_size = model_config['output_shape']
num_class = model_config['num_class']
ignore_label = dataset_config['ignore_label']
model_load_path = train_hypers['model_load_path']
SemKITTI_label_name = get_SemKITTI_label_name(dataset_config["label_mapping"])
unique_label = np.asarray(sorted(list(SemKITTI_label_name.keys())))[1:] - 1
unique_label_str = [SemKITTI_label_name[x] for x in unique_label + 1]
my_model = model_builder.build(model_config)
model_load_path += 'iou26.6891_epoch19.pth'
if os.path.exists(model_load_path):
print('Load model from: %s' % model_load_path)
my_model = load_checkpoint(model_load_path, my_model)
else:
print('No existing model, training model from scratch...')
my_model.to(pytorch_device)
_, test_dataset_loader, test_pt_dataset = data_builder.build(dataset_config,
train_dataloader_config,
val_dataloader_config,
grid_size=grid_size,
use_tta=True,
use_multiscan=True)
# training
dataset_name = val_dataloader_config["imageset"]
output_path = 'out_scpnet/' + dataset_name
if True:
print('Generate predictions for test split')
pbar = tqdm(total=len(test_dataset_loader))
time.sleep(10)
### learning map
with open("config/label_mapping/semantic-kitti.yaml", 'r') as stream:
semkittiyaml = yaml.safe_load(stream)
# make lookup table for mapping
learning_map_inv = semkittiyaml["learning_map_inv"]
maxkey = max(learning_map_inv.keys())
# +100 hack making lut bigger just in case there are unknown labels
remap_lut_First = np.zeros((maxkey + 100), dtype=np.int32)
remap_lut_First[list(learning_map_inv.keys())] = list(learning_map_inv.values())
if True:
if True:
my_model.eval()
with torch.no_grad():
for i_iter_test, (_, _, test_grid, _, test_pt_fea, test_index, origin_len) in enumerate(
test_dataset_loader):
test_pt_fea_ten = [torch.from_numpy(i).type(torch.FloatTensor).to(pytorch_device) for i in
test_pt_fea]
test_grid_ten = [torch.from_numpy(i).to(pytorch_device) for i in test_grid]
predict_labels = my_model(test_pt_fea_ten, test_grid_ten, val_batch_size, test_grid, use_tta=False)
predict_labels = torch.argmax(predict_labels, dim=1)
predict_labels = predict_labels.cpu().detach().numpy()
if True:
test_pred_label = np.squeeze(predict_labels)
### save prediction after remapping
pred = test_pred_label
pred = pred.astype(np.uint32)
pred = pred.reshape((-1))
upper_half = pred >> 16 # get upper half for instances
lower_half = pred & 0xFFFF # get lower half for semantics
lower_half = remap_lut_First[lower_half] # do the remapping of semantics
pred = (upper_half << 16) + lower_half # reconstruct full label
pred = pred.astype(np.uint32)
final_preds = pred.astype(np.uint16)
save_dir = test_pt_dataset.im_idx[test_index[0]]
_,dir2 = save_dir.split('/sequences/',1)
new_save_dir = output_path + '/sequences/' +dir2.replace('velodyne', 'predictions')[:-3]+'label'
if not os.path.exists(os.path.dirname(new_save_dir)):
try:
os.makedirs(os.path.dirname(new_save_dir))
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
final_preds.tofile(new_save_dir)
pbar.update(1)
del test_grid, test_pt_fea, test_grid_ten, test_index
pbar.close()
print('Predicted test labels are saved in %s. Need to be shifted to original label format before submitting to the Competition website.' % output_path)
print('Remapping script can be found in semantic-kitti-api.')
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('-y', '--config_path', default='config/semantickitti-multiscan.yaml')
args = parser.parse_args()
print(' '.join(sys.argv))
print(args)
main(args)