-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
267 lines (217 loc) · 8.46 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""
evaluation
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import lpips
import os
import imageio
import numpy as np
from PIL import Image
from torchvision.models import inception_v3
from torchvision import transforms
from scipy import linalg
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
# Mean Square Error
class MSE(object):
def __call__(self, pred, gt):
print('pred.shape,gt.shape',pred.shape,gt.shape)
return torch.mean((pred - gt) ** 2)
# Peak Signal to Noise Ratio
class PSNR(object):
def __call__(self, pred, gt):
mse = torch.mean((pred - gt) ** 2)
return 10 * torch.log10(1 / mse)
# structural similarity index
class SSIM(object):
'''
borrowed from https://github.com/huster-wgm/Pytorch-metrics/blob/master/metrics.py
'''
def gaussian(self, w_size, sigma):
gauss = torch.Tensor([math.exp(-(x - w_size//2)**2/float(2*sigma**2)) for x in range(w_size)])
return gauss/gauss.sum()
def create_window(self, w_size, channel=1):
_1D_window = self.gaussian(w_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, w_size, w_size).contiguous()
return window
def __call__(self, y_pred, y_true, w_size=11, size_average=True, full=False):
"""
args:
y_true : 4-d ndarray in [batch_size, channels, img_rows, img_cols]
y_pred : 4-d ndarray in [batch_size, channels, img_rows, img_cols]
w_size : int, default 11
size_average : boolean, default True
full : boolean, default False
return ssim, larger the better
"""
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
if torch.max(y_pred) > 128:
max_val = 255
else:
max_val = 1
if torch.min(y_pred) < -0.5:
min_val = -1
else:
min_val = 0
L = max_val - min_val
padd = 0
(_, channel, height, width) = y_pred.size()
window = self.create_window(w_size, channel=channel).to(y_pred.device)
mu1 = F.conv2d(y_pred, window, padding=padd, groups=channel)
mu2 = F.conv2d(y_true, window, padding=padd, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(y_pred * y_pred, window, padding=padd, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(y_true * y_true, window, padding=padd, groups=channel) - mu2_sq
sigma12 = F.conv2d(y_pred * y_true, window, padding=padd, groups=channel) - mu1_mu2
C1 = (0.01 * L) ** 2
C2 = (0.03 * L) ** 2
v1 = 2.0 * sigma12 + C2
v2 = sigma1_sq + sigma2_sq + C2
cs = torch.mean(v1 / v2) # contrast sensitivity
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
if size_average:
ret = ssim_map.mean()
else:
ret = ssim_map.mean(1).mean(1).mean(1)
if full:
return ret, cs
return ret
# Learned Perceptual Image Patch Similarity
class LPIPS(object):
'''
borrowed from https://github.com/huster-wgm/Pytorch-metrics/blob/master/metrics.py
'''
def __init__(self):
self.model = lpips.LPIPS(net='vgg').cuda()
def __call__(self, y_pred, y_true, normalized=True):
"""
args:
y_true : 4-d ndarray in [batch_size, channels, img_rows, img_cols]
y_pred : 4-d ndarray in [batch_size, channels, img_rows, img_cols]
normalized : change [0,1] => [-1,1] (default by LPIPS)
return LPIPS, smaller the better
"""
if normalized:
y_pred = y_pred * 2.0 - 1.0
y_true = y_true * 2.0 - 1.0
error = self.model.forward(y_pred, y_true)
return torch.mean(error)
class FID(object):
def __init__(self, batch_size=50, dims=2048, cuda=True):
self.batch_size = batch_size
self.dims = dims
self.cuda = cuda
self.device = torch.device("cuda" if cuda else "cpu")
self.inception_model = inception_v3(pretrained=True, transform_input=False).to(self.device)
self.inception_model.eval()
def compute_activations(self, images):
"""
Compute activations of the pool_3 layer for each image.
"""
with torch.no_grad():
activations = self.inception_model(images)[0]
return activations
def calculate_frechet_distance(self, mu1, sigma1, mu2, sigma2):
"""
Calculate Frechet distance between two multivariate Gaussians.
"""
eps = 1e-6
diff = mu1 - mu2
print(sigma1)
covmean, _ = linalg.sqrtm(sigma1 @ sigma2, disp=False)
if not np.isfinite(covmean).all():
msg = "fid calculation produces singular product; adding %s to diagonal of cov estimates" % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset) @ (sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError("Imaginary component {}".format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff @ diff + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
def calculate_activation_statistics(self, images):
"""
Calculate the mean and covariance of activations for a set of images.
"""
act = self.compute_activations(images)
print(act.shape)
# mu = np.mean(act, axis=0, dtype=np.float64) # Explicitly specify dtype
mu = np.mean(act.cpu().numpy(), axis=0, dtype=np.float64) # Explicitly specify dtype
sigma = np.cov(act.cpu().numpy(), rowvar=False)
return mu, sigma
def preprocess_images(self, images):
"""
Preprocess images for the InceptionV3 model.
"""
if images.shape[1] == 1:
images = images.repeat(1, 3, 1, 1)
images = F.interpolate(images, size=(299, 299), mode='bilinear', align_corners=False)
images = 2 * images - 1 # Normalize to [-1, 1]
return images
def __call__(self, y_pred, y_true):
"""
Compute Frechet Inception Distance (FID) between two sets of images.
Args:
y_true (torch.Tensor): Real images, 4D tensor [batch_size, channels, img_rows, img_cols]
y_pred (torch.Tensor): Generated images, 4D tensor [batch_size, channels, img_rows, img_cols]
Returns:
fid_score (float): Frechet Inception Distance
"""
y_true = self.preprocess_images(y_true)
y_pred = self.preprocess_images(y_pred)
mu1, sigma1 = self.calculate_activation_statistics(y_true)
mu2, sigma2 = self.calculate_activation_statistics(y_pred)
fid_score = self.calculate_frechet_distance(mu1, sigma1, mu2, sigma2)
return fid_score
def read_images_in_dir(imgs_dir,is_gt=False):
imgs = []
fnames = os.listdir(imgs_dir)
image_formats = ['.jpg', '.jpeg', '.png', '.bmp']
fnames = [fname for fname in fnames if os.path.splitext(fname)[-1].lower() in image_formats]
fnames.sort()
for fname in fnames:
img_path = os.path.join(imgs_dir, fname)
img = imageio.imread(img_path)
img = (np.array(img) / 255.).astype(np.float32)
img = np.transpose(img, (2, 0, 1))
img = img[:3, :, :]
imgs.append(img)
imgs = np.stack(imgs)
return imgs
def estim_error(estim, gt):
errors = dict()
metric = MSE()
errors["mse"] = metric(estim, gt).item()
metric = PSNR()
errors["psnr"] = metric(estim, gt).item()
metric = SSIM()
errors["ssim"] = metric(estim, gt).item()
metric = LPIPS()
errors["lpips"] = metric(estim, gt).item()
return errors
def save_error(errors, name, save_dir):
save_path = os.path.join(save_dir, name+".txt")
f = open(save_path,"w")
f.write( str(errors) )
f.close()
### specify name and path here
name = '...'
estim_dir = '...'
gt_dir = '...'
savedir = '...'
###
estim = read_images_in_dir(estim_dir)
gt = read_images_in_dir(gt_dir,is_gt=True)
estim = torch.Tensor(estim).cuda()
gt = torch.Tensor(gt).cuda()
errors = estim_error(estim, gt)
save_error(errors, name, savedir)
print(errors)