From fecb767fc68fdf52a2742330ce2ac1ef0656bdcd Mon Sep 17 00:00:00 2001 From: "texify[bot]" Date: Mon, 4 Mar 2019 12:12:42 +0000 Subject: [PATCH] Rendered TeX expressions in c9024e97f692419f560e6f455a522226443c6b69 --- README.md | 4 +- tex/a2f89e4ad54362f5c067ab4838f1ee5a.svg | 48 ++++++++++++++++++++++++ 2 files changed, 50 insertions(+), 2 deletions(-) create mode 100644 tex/a2f89e4ad54362f5c067ab4838f1ee5a.svg diff --git a/README.md b/README.md index c824b7d..f25dc49 100644 --- a/README.md +++ b/README.md @@ -68,7 +68,7 @@ python multitaskAIS.py \ After the Embedding layer is trained, we can run task-specific blocks. #### save_outcomes -To avoid re-caculating the $log[p(x_t|x_{1..t-1},x_{1..t-1})]$ for each tasks, we calculate them once and save as .pkl file. +To avoid re-caculating the for each tasks, we calculate them once and save as .pkl file. ``` python multitaskAIS.py \ --mode=save_outcomes \ @@ -83,7 +83,7 @@ python multitaskAIS.py \ Similarly for the test set (```testset_name=dataset8/dataset8_valid.pkl```). #### log_density -*log_density* calculates the distribution of $log[p(x_t|x_{1..t-1},x_{1..t-1})]$ in each small cells of the ROI. +*log_density* calculates the distribution of in each small cells of the ROI. ``` python multitaskAIS.py \ --mode=save_outcomes \ diff --git a/tex/a2f89e4ad54362f5c067ab4838f1ee5a.svg b/tex/a2f89e4ad54362f5c067ab4838f1ee5a.svg new file mode 100644 index 0000000..a7c53c9 --- /dev/null +++ b/tex/a2f89e4ad54362f5c067ab4838f1ee5a.svg @@ -0,0 +1,48 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file