forked from bmaltais/kohya_ss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_diffusers20_original_sd.py
133 lines (115 loc) · 6.25 KB
/
convert_diffusers20_original_sd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# convert Diffusers v1.x/v2.0 model to original Stable Diffusion
import argparse
import os
import torch
from diffusers import StableDiffusionPipeline
import library.model_util as model_util
def convert(args):
# 引数を確認する
load_dtype = torch.float16 if args.fp16 else None
save_dtype = None
if args.fp16 or args.save_precision_as == "fp16":
save_dtype = torch.float16
elif args.bf16 or args.save_precision_as == "bf16":
save_dtype = torch.bfloat16
elif args.float or args.save_precision_as == "float":
save_dtype = torch.float
is_load_ckpt = os.path.isfile(args.model_to_load)
is_save_ckpt = len(os.path.splitext(args.model_to_save)[1]) > 0
assert not is_load_ckpt or args.v1 != args.v2, f"v1 or v2 is required to load checkpoint / checkpointの読み込みにはv1/v2指定が必要です"
# assert (
# is_save_ckpt or args.reference_model is not None
# ), f"reference model is required to save as Diffusers / Diffusers形式での保存には参照モデルが必要です"
# モデルを読み込む
msg = "checkpoint" if is_load_ckpt else ("Diffusers" + (" as fp16" if args.fp16 else ""))
print(f"loading {msg}: {args.model_to_load}")
if is_load_ckpt:
v2_model = args.v2
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(v2_model, args.model_to_load, unet_use_linear_projection_in_v2=args.unet_use_linear_projection)
else:
pipe = StableDiffusionPipeline.from_pretrained(
args.model_to_load, torch_dtype=load_dtype, tokenizer=None, safety_checker=None
)
text_encoder = pipe.text_encoder
vae = pipe.vae
unet = pipe.unet
if args.v1 == args.v2:
# 自動判定する
v2_model = unet.config.cross_attention_dim == 1024
print("checking model version: model is " + ("v2" if v2_model else "v1"))
else:
v2_model = not args.v1
# 変換して保存する
msg = ("checkpoint" + ("" if save_dtype is None else f" in {save_dtype}")) if is_save_ckpt else "Diffusers"
print(f"converting and saving as {msg}: {args.model_to_save}")
if is_save_ckpt:
original_model = args.model_to_load if is_load_ckpt else None
key_count = model_util.save_stable_diffusion_checkpoint(
v2_model, args.model_to_save, text_encoder, unet, original_model, args.epoch, args.global_step, save_dtype, vae
)
print(f"model saved. total converted state_dict keys: {key_count}")
else:
print(f"copy scheduler/tokenizer config from: {args.reference_model if args.reference_model is not None else 'default model'}")
model_util.save_diffusers_checkpoint(
v2_model, args.model_to_save, text_encoder, unet, args.reference_model, vae, args.use_safetensors
)
print(f"model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--v1", action="store_true", help="load v1.x model (v1 or v2 is required to load checkpoint) / 1.xのモデルを読み込む"
)
parser.add_argument(
"--v2", action="store_true", help="load v2.0 model (v1 or v2 is required to load checkpoint) / 2.0のモデルを読み込む"
)
parser.add_argument(
"--unet_use_linear_projection", action="store_true", help="When saving v2 model as Diffusers, set U-Net config to `use_linear_projection=true` (to match stabilityai's model) / Diffusers形式でv2モデルを保存するときにU-Netの設定を`use_linear_projection=true`にする(stabilityaiのモデルと合わせる)"
)
parser.add_argument(
"--fp16",
action="store_true",
help="load as fp16 (Diffusers only) and save as fp16 (checkpoint only) / fp16形式で読み込み(Diffusers形式のみ対応)、保存する(checkpointのみ対応)",
)
parser.add_argument("--bf16", action="store_true", help="save as bf16 (checkpoint only) / bf16形式で保存する(checkpointのみ対応)")
parser.add_argument(
"--float", action="store_true", help="save as float (checkpoint only) / float(float32)形式で保存する(checkpointのみ対応)"
)
parser.add_argument(
"--save_precision_as",
type=str,
default="no",
choices=["fp16", "bf16", "float"],
help="save precision, do not specify with --fp16/--bf16/--float / 保存する精度、--fp16/--bf16/--floatと併用しないでください",
)
parser.add_argument("--epoch", type=int, default=0, help="epoch to write to checkpoint / checkpointに記録するepoch数の値")
parser.add_argument(
"--global_step", type=int, default=0, help="global_step to write to checkpoint / checkpointに記録するglobal_stepの値"
)
parser.add_argument(
"--reference_model",
type=str,
default=None,
help="scheduler/tokenizerのコピー元Diffusersモデル、Diffusers形式で保存するときに使用される、省略時は`runwayml/stable-diffusion-v1-5` または `stabilityai/stable-diffusion-2-1` / reference Diffusers model to copy scheduler/tokenizer config from, used when saving as Diffusers format, default is `runwayml/stable-diffusion-v1-5` or `stabilityai/stable-diffusion-2-1`",
)
parser.add_argument(
"--use_safetensors",
action="store_true",
help="use safetensors format to save Diffusers model (checkpoint depends on the file extension) / Duffusersモデルをsafetensors形式で保存する(checkpointは拡張子で自動判定)",
)
parser.add_argument(
"model_to_load",
type=str,
default=None,
help="model to load: checkpoint file or Diffusers model's directory / 読み込むモデル、checkpointかDiffusers形式モデルのディレクトリ",
)
parser.add_argument(
"model_to_save",
type=str,
default=None,
help="model to save: checkpoint (with extension) or Diffusers model's directory (without extension) / 変換後のモデル、拡張子がある場合はcheckpoint、ない場合はDiffusesモデルとして保存",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
convert(args)