-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel.py
421 lines (350 loc) · 16.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
from tkinter import HIDDEN
from numpy import require
import torch
import torch.nn as nn
import numpy as np
import FrEIA.modules as Fm
import FrEIA.framework as Ff
from FrEIA.framework import *
from FrEIA.framework import topological_order
from typing import List, Tuple, Iterable, Union, Optional
from torch import Tensor
from FrEIA.modules.base import InvertibleModule
# CNN hidden channel size, ratio to input channel size
HIDDEN_SIZE = 128
class Identity(nn.Module):
def __init__(self, return_value=None):
super(Identity, self).__init__()
self.return_value = return_value
def forward(self, x, *args, **kwargs):
return x
class FeatureExtractor:
def __init__(self, backbone):
self.clear()
self.bb = backbone
def __call__(self, module, module_in, module_out):
self.saved_feature = module_out.detach()
if self.bb == "deit_base_distilled_patch16_384":
self.saved_feature = self.saved_feature[:, 2:]
def clear(self):
self.saved_feature = None
class OwnGraphINN(InvertibleModule):
def __init__(self, node_list, force_tuple_output=False, verbose=False):
# Gather lists of input, output and condition nodes
in_nodes = [node_list[i] for i in range(len(node_list))
if isinstance(node_list[i], InputNode)]
out_nodes = [node_list[i] for i in range(len(node_list))
if isinstance(node_list[i], OutputNode)]
condition_nodes = [node_list[i] for i in range(len(node_list)) if
isinstance(node_list[i], ConditionNode)]
# Check that all nodes are in the list
for node in node_list:
for in_node, idx in node.inputs:
if in_node not in node_list:
raise ValueError(f"{node} gets input from {in_node}, "
f"but the latter is not in the node_list "
f"passed to GraphINN.")
for out_node, idx in node.outputs:
if out_node not in node_list:
raise ValueError(f"{out_node} gets input from {node}, "
f"but the it's not in the node_list "
f"passed to GraphINN.")
# Build the graph and tell nodes about their dimensions so that they can
# build the modules
node_list = topological_order(node_list, in_nodes, out_nodes)
global_in_shapes = [node.output_dims[0] for node in in_nodes]
global_out_shapes = [node.input_dims[0] for node in out_nodes]
global_cond_shapes = [node.output_dims[0] for node in condition_nodes]
# Only now we can set out shapes
super().__init__(global_in_shapes, global_cond_shapes)
self.node_list = node_list
# Now we can store everything -- before calling super constructor,
# nn.Module doesn't allow assigning anything
self.in_nodes = in_nodes
self.condition_nodes = condition_nodes
self.out_nodes = out_nodes
self.global_out_shapes = global_out_shapes
self.force_tuple_output = force_tuple_output
self.module_list = nn.ModuleList([n.module for n in node_list
if n.module is not None])
if verbose:
print(self)
def output_dims(self, input_dims: List[Tuple[int]]) -> List[Tuple[int]]:
if len(self.global_out_shapes) == 1 and not self.force_tuple_output:
raise ValueError("You can only call output_dims on a "
"GraphINN with more than one output "
"or when setting force_tuple_output=True.")
return self.global_out_shapes
def forward(self, x_or_z: Union[Tensor, Iterable[Tensor]],
c: Iterable[Tensor] = None, rev: bool = False, jac: bool = True,
intermediate_outputs: bool = False, x: None = None) \
-> Tuple[Tuple[Tensor], Tensor]:
"""
Forward or backward computation of the whole net.
"""
if x is not None:
x_or_z = x
warnings.warn("You called GraphINN(x=...). x is now called x_or_z, "
"please pass input as positional argument.")
if torch.is_tensor(x_or_z):
x_or_z = x_or_z,
if torch.is_tensor(c):
c = c,
jacobian = torch.zeros((x_or_z[0].shape[0], 1, *x_or_z[0].shape[2:])).to(x_or_z[0])
outs = {}
jacobian_dict = {} if jac else None
# Explicitly set conditions and starts
start_nodes = self.out_nodes if rev else self.in_nodes
if len(x_or_z) != len(start_nodes):
raise ValueError(f"Got {len(x_or_z)} inputs, but expected "
f"{len(start_nodes)}.")
for tensor, start_node in zip(x_or_z, start_nodes):
outs[start_node, 0] = tensor
if c is None:
c = []
if len(c) != len(self.condition_nodes):
raise ValueError(f"Got {len(c)} conditions, but expected "
f"{len(self.condition_nodes)}.")
for tensor, condition_node in zip(c, self.condition_nodes):
outs[condition_node, 0] = tensor
# Go backwards through nodes if rev=True
for node in self.node_list[::-1 if rev else 1]:
# Skip all special nodes
if node in self.in_nodes + self.out_nodes + self.condition_nodes:
continue
has_condition = len(node.conditions) > 0
mod_in = []
mod_c = []
for prev_node, channel in (node.outputs if rev else node.inputs):
mod_in.append(outs[prev_node, channel])
for cond_node in node.conditions:
mod_c.append(outs[cond_node, 0])
mod_in = tuple(mod_in)
mod_c = tuple(mod_c)
try:
if has_condition:
mod_out = node.module(mod_in, c=mod_c, rev=rev, jac=jac)
else:
mod_out = node.module(mod_in, rev=rev, jac=jac)
except Exception as e:
raise RuntimeError(f"{node} encountered an error.") from e
out, mod_jac = self._check_output(node, mod_out, jac, rev)
for out_idx, out_value in enumerate(out):
outs[node, out_idx] = out_value
if jac:
jacobian = jacobian + mod_jac
jacobian_dict[node] = mod_jac
for out_node in (self.in_nodes if rev else self.out_nodes):
# This copies the one input of the out node
outs[out_node, 0] = outs[(out_node.outputs if rev
else out_node.inputs)[0]]
if intermediate_outputs:
return outs, jacobian_dict
else:
out_list = [outs[out_node, 0] for out_node
in (self.in_nodes if rev else self.out_nodes)]
if len(out_list) == 1 and not self.force_tuple_output:
return out_list[0], jacobian
else:
return tuple(out_list), jacobian
def _check_output(self, node, mod_out, jac, rev):
if torch.is_tensor(mod_out):
raise ValueError(
f"The node {node}'s module returned a tensor only. This "
f"is deprecated without fallback. Please follow the "
f"signature of InvertibleOperator#forward in your module "
f"if you want to use it in a GraphINN.")
if len(mod_out) != 2:
raise ValueError(
f"The node {node}'s module returned a tuple of length "
f"{len(mod_out)}, but should return a tuple `z_or_x, jac`.")
out, mod_jac = mod_out
if torch.is_tensor(out):
raise ValueError(f"The node {node}'s module returns a tensor. "
f"This is deprecated.")
if len(out) != len(node.inputs if rev else node.outputs):
raise ValueError(
f"The node {node}'s module returned {len(out)} output "
f"variables, but should return "
f"{len(node.inputs if rev else node.outputs)}.")
if not torch.is_tensor(mod_jac):
if isinstance(mod_jac, (float, int)):
mod_jac = torch.zeros((out[0].shape[0], 1, *out[0].shape[2:])).to(out[0].device) \
+ mod_jac
elif jac:
raise ValueError(
f"The node {node}'s module returned a non-tensor as "
f"Jacobian: {mod_jac}")
elif not jac and mod_jac is not None:
raise ValueError(
f"The node {node}'s module returned neither None nor a "
f"Jacobian: {mod_jac}")
return out, mod_jac
def log_jacobian_numerical(self, x, c=None, rev=False, h=1e-04):
"""
Approximate log Jacobian determinant via finite differences.
"""
if isinstance(x, (list, tuple)):
batch_size = x[0].shape[0]
ndim_x_separate = [np.prod(x_i.shape[1:]) for x_i in x]
ndim_x_total = sum(ndim_x_separate)
x_flat = torch.cat([x_i.view(batch_size, -1) for x_i in x], dim=1)
else:
batch_size = x.shape[0]
ndim_x_total = np.prod(x.shape[1:])
x_flat = x.reshape(batch_size, -1)
J_num = torch.zeros(batch_size, ndim_x_total, ndim_x_total)
for i in range(ndim_x_total):
offset = x[0].new_zeros(batch_size, ndim_x_total)
offset[:, i] = h
if isinstance(x, (list, tuple)):
x_upper = torch.split(x_flat + offset, ndim_x_separate, dim=1)
x_upper = [x_upper[i].view(*x[i].shape) for i in range(len(x))]
x_lower = torch.split(x_flat - offset, ndim_x_separate, dim=1)
x_lower = [x_lower[i].view(*x[i].shape) for i in range(len(x))]
else:
x_upper = (x_flat + offset).view(*x.shape)
x_lower = (x_flat - offset).view(*x.shape)
y_upper, _ = self.forward(x_upper, c=c, rev=rev, jac=False)
y_lower, _ = self.forward(x_lower, c=c, rev=rev, jac=False)
if isinstance(y_upper, (list, tuple)):
y_upper = torch.cat(
[y_i.view(batch_size, -1) for y_i in y_upper], dim=1)
y_lower = torch.cat(
[y_i.view(batch_size, -1) for y_i in y_lower], dim=1)
J_num[:, :, i] = (y_upper - y_lower).view(batch_size, -1) / (2 * h)
logdet_num = x[0].new_zeros(batch_size)
for i in range(batch_size):
logdet_num[i] = torch.slogdet(J_num[i])[1]
return logdet_num
def get_node_by_name(self, name) -> Optional[Node]:
"""
Return the first node in the graph with the provided name.
"""
for node in self.node_list:
if node.name == name:
return node
return None
def get_module_by_name(self, name) -> Optional[nn.Module]:
"""
Return module of the first node in the graph with the provided name.
"""
node = self.get_node_by_name(name)
try:
return node.module
except AttributeError:
return None
class OwnActNorm(InvertibleModule):
def __init__(self, dims_in, dims_c=None, init_data=None):
super().__init__(dims_in, dims_c)
self.dims_in = dims_in[0]
param_dims = [1, self.dims_in[0]] + [1 for i in range(len(self.dims_in) - 1)]
self.scale = nn.Parameter(torch.zeros(*param_dims))
self.bias = nn.Parameter(torch.zeros(*param_dims))
if init_data:
self.initialize_with_data(init_data)
else:
self.init_on_next_batch = True
def on_load_state_dict(*args):
# when this module is loading state dict, we SHOULDN'T init with data,
# because that will reset the trained parameters. Registering a hook
# that disable this initialisation.
self.init_on_next_batch = False
self._register_load_state_dict_pre_hook(on_load_state_dict)
def initialize_with_data(self, data):
# Initialize to mean 0 and std 1 with sample batch
# 'data' expected to be of shape (batch, channels[, ...])
assert all([data.shape[i+1] == self.dims_in[i] for i in range(len(self.dims_in))]),\
"Can't initialize ActNorm layer, provided data don't match input dimensions."
self.scale.data.view(-1)[:] \
= torch.log(1 / data.transpose(0,1).contiguous().view(self.dims_in[0], -1).std(dim=-1))
data = data * self.scale.exp()
self.bias.data.view(-1)[:] \
= -data.transpose(0,1).contiguous().view(self.dims_in[0], -1).mean(dim=-1)
self.init_on_next_batch = False
def forward(self, x, rev=False, jac=True):
if self.init_on_next_batch:
self.initialize_with_data(x[0])
#jac = (self.scale.sum() * np.prod(self.dims_in[1:])).repeat(x[0].shape[0])
jac = self.scale.sum(dim=1, keepdim=True).repeat(x[0].shape[0], 1, *self.dims_in[1:])
if rev:
jac = -jac
if not rev:
return [x[0] * self.scale.exp() + self.bias], jac
else:
return [(x[0] - self.bias) / self.scale.exp()], jac
def output_dims(self, input_dims):
assert len(input_dims) == 1, "Can only use 1 input"
return input_dims
class FastFlowBlock(Fm.coupling_layers.GLOWCouplingBlock):
def __init__(self, dims_in, dims_c=[], subnet_constructor=None, clamp=0.15, clamp_activation="ATAN"):
super().__init__(dims_in, dims_c=dims_c, subnet_constructor=subnet_constructor, clamp=clamp, clamp_activation=clamp_activation)
self.subnet1.apply(init_with_xavier)
self.subnet2.apply(init_with_xavier)
def _coupling1(self, x1, u2, rev=False):
a2 = self.subnet2(u2)
s2, t2 = a2[:, :self.split_len1], a2[:, self.split_len1:]
s2 = self.clamp * self.f_clamp(s2)
j1 = s2
if rev:
y1 = (x1 - t2) * torch.exp(-s2)
return y1, -j1
else:
y1 = torch.exp(s2) * x1 + t2
return y1, j1
def _coupling2(self, x2, u1, rev=False):
a1 = self.subnet1(u1)
s1, t1 = a1[:, :self.split_len2], a1[:, self.split_len2:]
s1 = self.clamp * self.f_clamp(s1)
j2 = s1
if rev:
y2 = (x2 - t1) * torch.exp(-s1)
return y2, -j2
else:
y2 = torch.exp(s1) * x2 + t1
return y2, j2
def subnet_conv_3x3(c_in, c_out):
return nn.Sequential(nn.Conv2d(c_in, HIDDEN_SIZE, 3, padding=1), nn.ReLU(),
nn.Conv2d(HIDDEN_SIZE, c_out, 3, padding=1))
def subnet_conv_1x1(c_in, c_out):
return nn.Sequential(nn.Conv2d(c_in, HIDDEN_SIZE, 1), nn.ReLU(),
nn.Conv2d(HIDDEN_SIZE, c_out, 1))
def init_with_xavier(module):
#gain = nn.init.calculate_gain('relu')
gain = 1/50.0
if isinstance(module, nn.Conv2d):
nn.init.xavier_uniform_(module.weight, gain=gain)
def init_last_conv_with_zeros(module):
if isinstance(module[-1], nn.Conv2d):
nn.init.zeros_(module[-1].weight)
nn.init.zeros_(module[-1].bias)
def build_fast_flow(clamp, clamp_activation, encoded_shape=(768, 28, 28)):
nodes = [Ff.InputNode(*encoded_shape, name='Input')]
for i in range(20):
nodes.append(Ff.Node(nodes[-1], OwnActNorm, {}, name='ActNorm'))
nodes.append(Ff.Node(nodes[-1], Fm.PermuteRandom, {}, name="ChannelPermute"))
if i % 2 == 0:
nodes.append(Ff.Node(
nodes[-1],
FastFlowBlock,
{
'subnet_constructor': subnet_conv_3x3,
'clamp': clamp,
'clamp_activation': clamp_activation
},
name='FastFlowStep_{}_3x3'.format(i)
))
else:
nodes.append(Ff.Node(
nodes[-1],
FastFlowBlock,
{
'subnet_constructor': subnet_conv_1x1,
'clamp': clamp,
'clamp_activation': clamp_activation
},
name='FastFlowStep_{}_1x1'.format(i)
))
nodes.append(Ff.OutputNode(nodes[-1], name='output'))
conv_inn = OwnGraphINN(nodes)
return conv_inn