-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathSAGE.py
144 lines (107 loc) · 4.13 KB
/
SAGE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import tensorflow as tf
_LAYER_UIDS = {}
def zeros(shape, name=None):
"""All zeros."""
initial = tf.zeros(shape, dtype=tf.float32)
return tf.Variable(initial, name=name)
def glorot(shape, name=None):
"""Glorot & Bengio (AISTATS 2010) init."""
init_range = np.sqrt(6.0 / (shape[0] + shape[1]))
initial = tf.random_uniform(shape, minval=-init_range, maxval=init_range, dtype=tf.float32)
return tf.Variable(initial, name=name)
def dot(x, y, sparse=False):
"""Wrapper for tf.matmul (sparse vs dense)."""
res = tf.layers.conv2d(x, y[1], [1, y[0]])
return res[:, :, 0, :]
def get_layer_uid(layer_name=''):
"""Helper function, assigns unique layer IDs."""
if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1
else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]
class Layer(object):
def __init__(self, **kwargs):
allowed_kwargs = {'name'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
layer = self.__class__.__name__.lower()
name = name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.vars = {}
class GraphConvolution(Layer):
"""Graph convolution layer."""
def __init__(self, input, adj_matrix, output_dim, dropout=0., act=tf.nn.relu, bias=False,
**kwargs):
super(GraphConvolution, self).__init__(**kwargs)
self.dropout = dropout
self.act = act
self.adj_matrix = adj_matrix
self.bias = bias
self.input = input
self.output_dim = output_dim
with tf.variable_scope(self.name + '_vars'):
if self.bias:
self.vars['bias'] = zeros([output_dim], name='bias')
def call(self):
with tf.name_scope(self.name):
outputs = self._call(self.input)
return outputs
def _call(self, inputs):
# print(inputs)
x = inputs
x = tf.nn.dropout(x, self.dropout)
# convolve
tmp = tf.tile(tf.expand_dims(tf.reduce_sum(self.adj_matrix, axis=-1), -1), (1, 1, x.shape[-1]))
x = tf.matmul(self.adj_matrix, x) / tmp
# print(x.shape)
self.weight = glorot([int(self.input.shape[-1]), int(self.output_dim)])
pre_sup = tf.matmul(x, self.weight)
output = pre_sup
# bias
if self.bias:
output += self.vars['bias']
return self.act(output)
class Model(object):
def __init__(self, **kwargs):
allowed_kwargs = {'name'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
name = self.__class__.__name__.lower()
self.name = name
self.vars = {}
self.placeholders = {}
self.layers = []
self.activations = []
self.inputs = None
self.outputs = None
def build(self):
raise NotImplementedError
class GCN(Model):
def __init__(self, x, adj_matrix, output_dim, dropout=0.5, **kwargs):
super(GCN, self).__init__(**kwargs)
self.input = x
self.adj_matrix = adj_matrix
self.dropout = dropout
self.output_dim = output_dim
def build(self):
if len(self.output_dim) == 0:
return self.input
outputs = GraphConvolution(input=self.input,
adj_matrix=self.adj_matrix,
output_dim=self.output_dim[0],
act=tf.nn.leaky_relu,
dropout=self.dropout).call()
for i in range(1, len(self.output_dim)):
outputs = GraphConvolution(input=outputs,
adj_matrix=self.adj_matrix,
output_dim=self.output_dim[i],
act=tf.nn.leaky_relu,
dropout=self.dropout).call()
return outputs