forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_wholeimage_swap_multispecific.py
176 lines (139 loc) · 6.85 KB
/
test_wholeimage_swap_multispecific.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
'''
Author: Naiyuan liu
Github: https://github.com/NNNNAI
Date: 2021-11-23 17:03:58
LastEditors: Naiyuan liu
LastEditTime: 2021-11-24 19:19:22
Description:
'''
import cv2
import torch
import fractions
import numpy as np
from PIL import Image
import torch.nn.functional as F
from torchvision import transforms
from models.models import create_model
from options.test_options import TestOptions
from insightface_func.face_detect_crop_multi import Face_detect_crop
from util.reverse2original import reverse2wholeimage
import os
from util.add_watermark import watermark_image
import torch.nn as nn
from util.norm import SpecificNorm
import glob
from parsing_model.model import BiSeNet
def lcm(a, b): return abs(a * b) / fractions.gcd(a, b) if a and b else 0
transformer_Arcface = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def _totensor(array):
tensor = torch.from_numpy(array)
img = tensor.transpose(0, 1).transpose(0, 2).contiguous()
return img.float().div(255)
def _toarctensor(array):
tensor = torch.from_numpy(array)
img = tensor.transpose(0, 1).transpose(0, 2).contiguous()
return img.float().div(255)
if __name__ == '__main__':
opt = TestOptions().parse()
start_epoch, epoch_iter = 1, 0
crop_size = opt.crop_size
multisepcific_dir = opt.multisepcific_dir
torch.nn.Module.dump_patches = True
if crop_size == 512:
opt.which_epoch = 550000
opt.name = '512'
mode = 'ffhq'
else:
mode = 'None'
logoclass = watermark_image('./simswaplogo/simswaplogo.png')
model = create_model(opt)
model.eval()
mse = torch.nn.MSELoss().cuda()
spNorm =SpecificNorm()
app = Face_detect_crop(name='antelope', root='./insightface_func/models')
app.prepare(ctx_id= 0, det_thresh=0.6, det_size=(640,640),mode = mode)
with torch.no_grad():
# The specific person to be swapped(source)
source_specific_id_nonorm_list = []
source_path = os.path.join(multisepcific_dir,'SRC_*')
source_specific_images_path = sorted(glob.glob(source_path))
for source_specific_image_path in source_specific_images_path:
specific_person_whole = cv2.imread(source_specific_image_path)
specific_person_align_crop, _ = app.get(specific_person_whole,crop_size)
specific_person_align_crop_pil = Image.fromarray(cv2.cvtColor(specific_person_align_crop[0],cv2.COLOR_BGR2RGB))
specific_person = transformer_Arcface(specific_person_align_crop_pil)
specific_person = specific_person.view(-1, specific_person.shape[0], specific_person.shape[1], specific_person.shape[2])
# convert numpy to tensor
specific_person = specific_person.cuda()
#create latent id
specific_person_downsample = F.interpolate(specific_person, size=(112,112))
specific_person_id_nonorm = model.netArc(specific_person_downsample)
source_specific_id_nonorm_list.append(specific_person_id_nonorm.clone())
# The person who provides id information (list)
target_id_norm_list = []
target_path = os.path.join(multisepcific_dir,'DST_*')
target_images_path = sorted(glob.glob(target_path))
for target_image_path in target_images_path:
img_a_whole = cv2.imread(target_image_path)
img_a_align_crop, _ = app.get(img_a_whole,crop_size)
img_a_align_crop_pil = Image.fromarray(cv2.cvtColor(img_a_align_crop[0],cv2.COLOR_BGR2RGB))
img_a = transformer_Arcface(img_a_align_crop_pil)
img_id = img_a.view(-1, img_a.shape[0], img_a.shape[1], img_a.shape[2])
# convert numpy to tensor
img_id = img_id.cuda()
#create latent id
img_id_downsample = F.interpolate(img_id, size=(112,112))
latend_id = model.netArc(img_id_downsample)
latend_id = F.normalize(latend_id, p=2, dim=1)
target_id_norm_list.append(latend_id.clone())
assert len(target_id_norm_list) == len(source_specific_id_nonorm_list), "The number of images in source and target directory must be same !!!"
############## Forward Pass ######################
pic_b = opt.pic_b_path
img_b_whole = cv2.imread(pic_b)
img_b_align_crop_list, b_mat_list = app.get(img_b_whole,crop_size)
# detect_results = None
swap_result_list = []
id_compare_values = []
b_align_crop_tenor_list = []
for b_align_crop in img_b_align_crop_list:
b_align_crop_tenor = _totensor(cv2.cvtColor(b_align_crop,cv2.COLOR_BGR2RGB))[None,...].cuda()
b_align_crop_tenor_arcnorm = spNorm(b_align_crop_tenor)
b_align_crop_tenor_arcnorm_downsample = F.interpolate(b_align_crop_tenor_arcnorm, size=(112,112))
b_align_crop_id_nonorm = model.netArc(b_align_crop_tenor_arcnorm_downsample)
id_compare_values.append([])
for source_specific_id_nonorm_tmp in source_specific_id_nonorm_list:
id_compare_values[-1].append(mse(b_align_crop_id_nonorm,source_specific_id_nonorm_tmp).detach().cpu().numpy())
b_align_crop_tenor_list.append(b_align_crop_tenor)
id_compare_values_array = np.array(id_compare_values).transpose(1,0)
min_indexs = np.argmin(id_compare_values_array,axis=0)
min_value = np.min(id_compare_values_array,axis=0)
swap_result_list = []
swap_result_matrix_list = []
swap_result_ori_pic_list = []
for tmp_index, min_index in enumerate(min_indexs):
if min_value[tmp_index] < opt.id_thres:
swap_result = model(None, b_align_crop_tenor_list[tmp_index], target_id_norm_list[min_index], None, True)[0]
swap_result_list.append(swap_result)
swap_result_matrix_list.append(b_mat_list[tmp_index])
swap_result_ori_pic_list.append(b_align_crop_tenor_list[tmp_index])
else:
pass
if len(swap_result_list) !=0:
if opt.use_mask:
n_classes = 19
net = BiSeNet(n_classes=n_classes)
net.cuda()
save_pth = os.path.join('./parsing_model/checkpoint', '79999_iter.pth')
net.load_state_dict(torch.load(save_pth))
net.eval()
else:
net =None
reverse2wholeimage(swap_result_ori_pic_list, swap_result_list, swap_result_matrix_list, crop_size, img_b_whole, logoclass,\
os.path.join(opt.output_path, 'result_whole_swap_multispecific.jpg'), opt.no_simswaplogo,pasring_model =net,use_mask=opt.use_mask, norm = spNorm)
print(' ')
print('************ Done ! ************')
else:
print('The people you specified are not found on the picture: {}'.format(pic_b))