Skip to content

Commit 90de048

Browse files
feat: Creating new categories found in Readme in repo on build
1 parent 593fcfb commit 90de048

File tree

8 files changed

+328
-79
lines changed

8 files changed

+328
-79
lines changed

config/docs-config-condensed.yaml renamed to config/docs-template-config-condensed.yaml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -78,6 +78,7 @@ categories:
7878
quick-tour: []
7979
quickstart: []
8080
quickstart-1: []
81+
quickstart-boilerplate: []
8182
relevance-ai-quickstart: []
8283
terminology:
8384
- documents-1

config/docs-config.yaml renamed to config/docs-template-config.yaml

Lines changed: 204 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
docs:
1+
docs_template:
22
- other:
33
- data-privacy-policy.md
44
- sdk-reference.md
@@ -50,6 +50,9 @@ docs:
5050
- or.md
5151
- combining-filters-and-vector-search.md
5252
- ids.md
53+
- _snippets:
54+
- ecommerce_dataset_encoded_sample_document
55+
- bert_full_snippet
5356
- how-to-vectorize:
5457
- _notebooks:
5558
- RelevanceAI_ReadMe_How_to_Vectorize.ipynb
@@ -61,6 +64,8 @@ docs:
6164
- aggregations:
6265
- _notebooks:
6366
- RelevanceAI_ReadMe_Quickstart_Aggregations.ipynb
67+
- _snippets:
68+
- show_json_text_fields_result_keys
6469
- creating-aggregation-metrics.md
6570
- grouping-the-data.md
6671
- aggregations-1.md
@@ -69,6 +74,14 @@ docs:
6974
- _notebooks:
7075
- RelevanceAI_ReadMe_Creating_A_Dataset.ipynb
7176
- RelevanceAI_ReadMe_Insert_A_CSV.ipynb
77+
- _assets:
78+
- insert-csv-pandas.png
79+
- pull-update-push.png
80+
- health.png
81+
- monitor-dataset.png
82+
- csv-data-sample.png
83+
- dataset-list-view.png
84+
- datasets-RAI.png
7285
- insert-a-csv.md
7386
- project-and-dataset.md
7487
- insert-a-df.md
@@ -79,7 +92,28 @@ docs:
7992
- multi-vector-search-3:
8093
- multi-vector-search-with.md
8194
- multi-vector-search-2.md
95+
- _assets:
96+
- contains.png
97+
- preview_images.png
98+
- grouping-results.png
99+
- multiple-filters.png
100+
- category.png
101+
- combine.png
102+
- numeric.png
103+
- exact-match.png
104+
- regex.png
105+
- date.png
106+
- highlighting.png
107+
- filters-1.png
108+
- id.png
109+
- preview_audio.png
110+
- word-match.png
111+
- exists.png
82112
- jsonshower:
113+
- _snippets:
114+
- preview_highlighting
115+
- preview_images
116+
- preview_audio
83117
- image-fields.md
84118
- preview-audio.md
85119
- highlighting.md
@@ -99,18 +133,49 @@ docs:
99133
- RelevanceAI-ReadMe-Text-Search-using-USE-VectorHub.ipynb
100134
- RelevanceAI-ReadMe-Text-to-Image-Search.ipynb
101135
- RelevanceAI-ReadMe-Question-Answering-using-USE-QA-Tensorflow-Hub.ipynb
136+
- _snippets:
137+
- tfhub_useqa_encode_query
138+
- tfhub_useqa_encode_documents
139+
- clip_encode_image_documents
140+
- tfhub_useqa_encoding_functions
141+
- multivector_query_sample_data
142+
- clip_encoding_functions
143+
- clip_installation
144+
- clip_encode_query
145+
- _assets:
146+
- RelevanceAI_text_to_image.gif
147+
- RelevanceAI_quickstart_clip_dashboard.png
148+
- RelevanceAI_search_steps.png
149+
- RelevanceAI_text_search.png
150+
- RelevanceAI_quickstart_multivector_search.png
151+
- RelevanceAI_question_answering_search_results.png
152+
- RelevanceAI_ecommerce_dataset_preview.png
153+
- RelevanceAI_multivector_search_results.png
154+
- RelevanceAI_CLIP_contrastive_pretraining.png
155+
- RelevanceAI_text_image_search_results.png
102156
- quickstart-text-search.md
103157
- quickstart-question-answering.md
104158
- music-recommendation.md
105159
- quickstart-text-to-image-search.md
106160
- quickstart-multivector-search.md
107161
- vectors-and-vector-databases:
162+
- _assets:
163+
- RelevanceAI_vector_graphic.png
164+
- RelevanceAI_traditional_db.png
165+
- RelevanceAI_vector_items.png
166+
- RelevanceAI_experimentation_first_example_flow.png
167+
- RelevanceAI_vector_analysis.png
168+
- RelevanceAI_vectorbase_workflow.png
169+
- RelevanceAI_nearest_neighbour.png
170+
- RelevanceAI_vector_similarity.png
108171
- experimentation-workflow.md
109172
- what-are-vector-databases.md
110173
- what-are-vectors.md
111174
- why-experimentation-first.md
112175
- terminology:
113176
- documents-1.md
177+
- _assets:
178+
- quickstart_projector.png
114179
- old-welcome.md
115180
- terminology.md
116181
- boilerplate.md
@@ -121,8 +186,10 @@ docs:
121186
- quick-tour.md
122187
- quickstart.md
123188
- example-applications.md
189+
- quickstart-boilerplate.md
124190
- quickstart-1.md
125191
- "\u2618\uFE0F_Relevance_AI_Quickstart.md"
192+
- "\u2618\uFE0F_Relevance_AI_Quickstart.ipynb"
126193
- search-features:
127194
- _notebooks:
128195
- RelevanceAI_hybrid_search.ipynb
@@ -139,13 +206,126 @@ docs:
139206
- redirects:
140207
- vectorise-text-with-vectorhub.md
141208
- vectorise-images-with-vectorhub.md
209+
- _assets:
210+
- RelevanceAI-paviliondv6-20-large_w.png
211+
- traditional_search.png
212+
- RelevanceAI-paviliondv6-20-small_w.png
213+
- lack_of_semantic_info.png
142214
- combining-exact-text-with-vector-search.md
143215
- text-and-vector-search-hybrid.md
144216
- exact-text-matching.md
145217
- multi-vector-search-2-1.md
146218
- diversity-search.md
147219
- chunk-search-1.md
148220
- redirects.md
221+
- _snippets:
222+
- sample_documents:
223+
- get_titanic_dataset
224+
- quickstart_docs
225+
- get_realestate_dataset
226+
- get_ecommerce_dataset_encoded
227+
- get_ecommerce_dataset_clean
228+
- quickstart_docs_1
229+
- uuid
230+
- search:
231+
- multivector_query
232+
- multivector_query_multiple_models_weighted
233+
- vector_search_with_filter
234+
- traditional_search
235+
- hybrid_search
236+
- launch_search_app
237+
- multivector_query_multiple_models
238+
- show_json_text_fields
239+
- multivector_query_three_models
240+
- vector_search
241+
- multivector_query_show_json
242+
- query_show_json
243+
- installation:
244+
- relevanceai_git_installation
245+
- vectorhub_clip_installation
246+
- vectorhub_encoders_text_tfhub_installation
247+
- sentence_transformers_installation
248+
- relevanceai_dev_installation
249+
- vectorhub_encoders_transformers
250+
- vectorhub_encoders_sentence_transformers
251+
- relevanceai_editable_installation
252+
- relevanceai_installation
253+
- cluster:
254+
- cluster_vizops_distribution
255+
- launch_cluster_app
256+
- fit_predict_update
257+
- clusterops_fit_predict_documents
258+
- list_furthest_from_center
259+
- cluster_aggregate_metrics
260+
- cluster
261+
- clusterops_fit_predict_update
262+
- cluster_vizops_custom
263+
- evaluate
264+
- insert_centroid_documents
265+
- cluster_aggregate
266+
- clusterops
267+
- subclustering
268+
- get_centroid_documents
269+
- kmeans_cluster
270+
- cluster_vizops
271+
- groupby
272+
- cluster_metadata
273+
- cluster_sample_results
274+
- list_closest_to_center
275+
- client:
276+
- client_dataset
277+
- client_instantiation
278+
- sklearn:
279+
- skew_variation
280+
- dataset:
281+
- dataset_send_to
282+
- upsert_documents
283+
- clone_dataset
284+
- filters_three_setup
285+
- delete_dataset
286+
- list_datasets
287+
- dataset_basics
288+
- filters_setup
289+
- aggregate_dataset
290+
- insert_csv
291+
- dataset_vectorize
292+
- upsert_example
293+
- bulk_apply_encoding
294+
- filter_setup_with_format
295+
- filter_setup
296+
- pull_update_push
297+
- insert_df
298+
- dataset_health
299+
- insert_documents
300+
- dataset
301+
- create_dataset
302+
- aggregation_query
303+
- vectorize
304+
- dataset_schema
305+
- apply_encoding
306+
- filter_dataset
307+
- general:
308+
- variable
309+
- encode:
310+
- encode_documents
311+
- clip_define_txt_encoder
312+
- clip_encode_an_image
313+
- clip_enc_image
314+
- clip_enc_img_docs
315+
- encode_fields_in_documents_func
316+
- encode_text_query
317+
- clip_encode_a_text_snippet
318+
- model_encode_query
319+
- use2vec_encode_documents
320+
- encode_documents_sample_func
321+
- encode_a_sample
322+
- clip2vec_encode_image_documents
323+
- transformer_enc
324+
- use_enc
325+
- output:
326+
- ecommerce_dataset_clean_sample_document
327+
- ecommerce_dataset_encoded_schema
328+
- ecommerce_dataset_encoded_sample_document
149329
- comparator:
150330
- search-comparator:
151331
- set-up.md
@@ -155,6 +335,12 @@ docs:
155335
- embedding-comparator.md
156336
- search-comparator.md
157337
- clustering-features:
338+
- _snippets:
339+
- clean_price_field
340+
- faiss_install
341+
- custom_clustering_sample
342+
- faiss_kmeans_clustering_sample
343+
- numpy_install
158344
- clustering:
159345
- _notebooks:
160346
- RelevanceAI-ReadMe-Kmeans-Clustering-Step-by-Step.ipynb
@@ -172,6 +358,9 @@ docs:
172358
- quickstart-clustering.md
173359
- quickstart-k-means.md
174360
- list-furthest-from-centroids.md
361+
- _assets:
362+
- RelevanceAI_clustering.png
363+
- RelevanceAI_clustering_quickstart_kmeans_results.png
175364
- cluster-evaluation:
176365
- _notebooks:
177366
- RelevanceAI-ReadMe-Cluster-Metrics.ipynb
@@ -195,4 +384,18 @@ docs:
195384
- dashboard:
196385
- saving-aggregation-queries-from-sdk.md
197386
- writing-aggregation-queries.md
387+
- _assets:
388+
- RelevanceAI_Workflow_Phases.png
389+
- RelevanceAI_vectors_dashboard.png
390+
- RelevanceAI_search_dashboard.png
391+
- RelevanceAI_auth_token_details.png
392+
- RelevanceAI_vector_space.png
393+
- RelevanceAI_auth_setting_details.png
394+
- RelevanceAI_images_dashboard.png
395+
- RelevanceAI_DS_Workflow.png
396+
- RelevanceAI_dataset_dashboard.png
397+
- RelevanceAI-logo.svg
398+
- RelevanceAI_cluster_dashboard.png
399+
- RelevanceAI_DS_Workflow_old.png
400+
- _snippet_params.json
198401
version: v2.0.0
Lines changed: 58 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,58 @@
1+
---
2+
createdAt: '2021-12-14T14:08:01.323Z'
3+
excerpt: Try us out in 5 lines of code!
4+
hidden: true
5+
slug: quickstart-boilerplate
6+
title: Quickstart boilerplate
7+
updatedAt: '2022-03-30T06:08:31.940Z'
8+
---
9+
10+
[block:api-header]
11+
{
12+
"title": "Try us out in 5 lines of code!"
13+
}
14+
[/block]
15+
Run this Quickstart in Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qMLzS4pAQfFBQ1wvCePbkSB6lOlrAcof?usp=sharing)
16+
17+
### 1. Set up Relevance AI
18+
[block:code]
19+
{
20+
"codes": [
21+
{
22+
"code": "pip install -U RelevanceAI",
23+
"language": "shell",
24+
"name": "shell"
25+
}
26+
]
27+
}
28+
[/block]
29+
### 2. Create a dataset and insert data
30+
[block:code]
31+
{
32+
"codes": [
33+
{
34+
"code": "from relevanceai import Client \n\n#\"You can sign up/login and find your credentials here: https://development.qualitative-cloud.pages.dev/login\"\n#\"Once you have signed up, click on the value under `Authorization token` and paste it here\"\nclient = Client()\n\ndocs = [\n\t{\"_id\": \"1\", \"example_vector_\": [0.1, 0.1, 0.1], \"data\": \"Documentation\"},\n\t{\"_id\": \"2\", \"example_vector_\": [0.2, 0.2, 0.2], \"data\": \"Best document!\"},\n\t{\"_id\": \"3\", \"example_vector_\": [0.3, 0.3, 0.3], \"data\": \"document example\"},\n\t{\"_id\": \"4\", \"example_vector_\": [0.4, 0.4, 0.4], \"data\": \"this is another doc\"},\n\t{\"_id\": \"5\", \"example_vector_\": [0.5, 0.5, 0.5], \"data\": \"this is a doc\"},\n]\n\nclient.insert_documents(dataset_id=\"quickstart\", docs=docs)",
35+
"language": "python",
36+
"name": "Python"
37+
}
38+
]
39+
}
40+
[/block]
41+
### 3. Vector search
42+
[block:code]
43+
{
44+
"codes": [
45+
{
46+
"code": "client.services.search.vector(\n dataset_id=\"quickstart\", \n multivector_query=[\n {\"vector\": [0.2, 0.2, 0.2], \"fields\": [\"example_vector_\"]},\n ],\n page_size=3,\n query=\"sample search\" # Stored on the dashboard but not required\n)",
47+
"language": "python"
48+
}
49+
]
50+
}
51+
[/block]
52+
This is just the start. Relevance AI comes out of the box with support for features such as multi-vector search, filters, facets and traditional keyword matching to combine with your vector search. You can read more about how to construct a multi-vector query with those features [here](doc:vector-search-prerequisites).
53+
54+
Get started with some example applications you can build with Relevance AI. Check out some other guides below!
55+
- [Text-to-image search with OpenAI's CLIP](doc:quickstart-text-to-image-search)
56+
- [Multi-vector search with your own vectors](doc:search-with-your-own-vectors)
57+
- [Hybrid Text search with Universal Sentence Encoder using Vectorhub](doc:quickstart-text-search)
58+
- [Text search with Universal Sentence Encoder Question Answer from Google](doc:quickstart-question-answering)

docs/integrations/coming-soon-2.md

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,8 @@
11
---
2-
title: "Coming Soon"
3-
slug: "coming-soon-2"
4-
excerpt: "Production Integrations with your vector database of choice coming soon!"
2+
createdAt: '2021-12-24T05:11:34.436Z'
3+
excerpt: Production Integrations with your vector database of choice coming soon!
54
hidden: false
6-
createdAt: "2021-12-24T05:11:34.436Z"
7-
updatedAt: "2021-12-24T05:12:35.111Z"
5+
slug: coming-soon-2
6+
title: Coming Soon
7+
updatedAt: '2021-12-24T05:12:35.111Z'
88
---
9-

0 commit comments

Comments
 (0)