-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvisualization_pipeline.py
401 lines (350 loc) · 14.9 KB
/
visualization_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from copy import deepcopy,copy
import random
import os
import open3d as o3d
import numpy as np
import helper
from Fragment import FeatureLines
from tqdm import tqdm
import pdb
import random
colors = [
[0, 204, 0],
[127, 127, 0],
[127, 0, 127],
[0, 127, 127],
[76, 153, 0],
[153, 0, 76],
[76, 0, 153],
[153, 76, 0],
[76, 0, 153],
[153, 0, 76],
[204, 51, 127],
[204, 51, 127],
[51, 204, 127],
[51, 127, 204],
[127, 51, 204],
[127, 204, 51],
[76, 76, 178],
[76, 178, 76],
[178, 76, 76],
[0, 204, 0],
[204, 0, 0],
]
def dilate_border(my_obj,border,size):
tmp_Obj = copy(my_obj)
tmp_Obj.pcd = copy(my_obj.pcd)
pcd_tree = o3d.geometry.KDTreeFlann(tmp_Obj.pcd)
w_co = copy(tmp_Obj.w_co)
new_borders = []
for idx in border:
point = tmp_Obj.pcd.points[idx]
[k, idx, _] = pcd_tree.search_radius_vector_3d(point,size)
new_borders.extend(idx)
return new_borders
def get_sides(Graph, borders):
faces = []
all_visited = set()
nodes = list(Graph.nodes)
shortest_cycle_length = np.sqrt(len(borders))//5
with tqdm(total=len(nodes)) as pbar:
while len(nodes):
random_point = nodes.pop(0)
while random_point in all_visited or random_point in borders:
if not len(nodes):
sorted_faces = sorted(faces,key = lambda key:key[0], reverse = True)
my_faces = []
for size,face in sorted_faces:
if size>shortest_cycle_length:
my_faces.append((size,face))
return my_faces
random_point = nodes.pop(0)
queue = [random_point]
visited = set()
while len(queue):
point = queue.pop(0)
if point not in visited and point not in borders:
visited.add(point)
all_visited.add(point)
neighbors = Graph.neighbors(point)
pbar.update(len(list(copy(neighbors))))
for neighbor in neighbors:
all_visited.add(neighbor)
if neighbor not in borders:
queue.append(neighbor)
#print(len(visited))
faces.append((len(visited),visited))
sorted_faces = sorted(faces,key = lambda key:key[0], reverse = True)
my_faces = []
for size,face in sorted_faces:
if size>shortest_cycle_length:
my_faces.append((size,face) )
return my_faces
def knn_expand(Obj,my_borders,node_face,face_nodes,size):
points_u = []
tmp_tree = o3d.geometry.KDTreeFlann(Obj.pcd)
for i in range(len(Obj.pcd.points)):
point = Obj.pcd.points[i]
[k, idx, _] = tmp_tree.search_knn_vector_3d(point, 100)
q_points = np.asarray(Obj.pcd.points).take(idx,axis=0)
points_u.append(np.mean(np.abs(q_points[1:] - point)))
radius = np.mean(points_u)
print("KNN Radius : ",radius)
borders = deepcopy(my_borders)
face_nodes_new = deepcopy(face_nodes)
tree = o3d.geometry.KDTreeFlann(Obj.pcd)
no_change = 0
while borders:
len_before = len(borders)
idx = borders.pop(0)
point = Obj.pcd.points[idx]
[k, q_idxs, _] = tree.search_knn_vector_3d(point, size)
#vote
my_faces = {}
for q_idx in q_idxs:
if q_idx not in node_face:
continue
if node_face[q_idx] not in my_faces:
my_faces[node_face[q_idx]] = 1
else:
my_faces[node_face[q_idx]] += 1
if len(my_faces)==0:
borders.append(idx)
else:
winner = max(my_faces, key=my_faces.get)
face_nodes_new[winner].add(idx)
node_face[idx] = winner
if len(borders) == len_before:
no_change += 1
else:
no_change = 0
if no_change >= len_before+10000000:
break
#print(len(borders))
return face_nodes_new
def find_dilattion_size(my_obj,border):
tmp_Obj = copy(my_obj)
tmp_Obj.pcd = copy(my_obj.pcd)
pcd_tree = o3d.geometry.KDTreeFlann(tmp_Obj.pcd)
w_co = copy(tmp_Obj.w_co)
size = 0
upper_size = 2
lower_size = 0
avg_number_ngh = 0
while lower_size < upper_size:
size = (lower_size+upper_size)/2.0
ngh = 0
for i,idx in enumerate(border):
point = Obj.pcd.points[idx]
[k, idx, _] = pcd_tree.search_radius_vector_3d(point,size)
ngh+=len(idx)
if abs(ngh-20*len(border))<5:
return size
elif ngh > 20*len(border):
upper_size = size-0.00000001
else:
lower_size = size
def run(Obj_url, pipline_variables, folder_path=''):
(small, large, N, to1, to2, to3, tb1, tb2, tb3, dilation_size, thre) = pipline_variables
variables = {}
print("start")
print(Obj_url.split("_")[-1])
if Obj_url.split("_")[-1] == "0.obj":
print("big object")
if Obj_url.endswith('.obj'):
Obj = FeatureLines(Obj_url,"mesh", voxel_size=large)
else:
Obj = FeatureLines(Obj_url,voxel_size=large)
else:
print("small object")
if Obj_url.endswith('.obj'):
Obj = FeatureLines(Obj_url,"mesh", voxel_size=small)
else:
Obj = FeatureLines(Obj_url, voxel_size=small)
# print("Size :",len(Obj.pcd.points))
print("starting init")
Obj.init(int(N))
# print("Size valid :",len(valid))
shortest_cycle_length = np.sqrt(len(Obj.pcd.points))//to1
variables['shortest_cycle_length'] = shortest_cycle_length
smallest_isolated_island_length = np.sqrt(len(Obj.pcd.points))//to2
variables['smallest_isolated_island_length'] = smallest_isolated_island_length
shortest_allowed_branch_length = np.sqrt(len(Obj.pcd.points))//to3
variables['shortest_allowed_branch_length'] = shortest_allowed_branch_length
isolated_islands_pruned_graph, F_lines, isolated_islands = helper.create_graph(Obj, \
shortest_cycle_length, smallest_isolated_island_length)
print("After graph",len([point for branch in F_lines for point in branch]))
print("constructing borders")
tmp_Obj = copy(Obj)
tmp_Obj.pcd = copy(Obj.pcd)
t1 = tb1
t2 = tb2
t3 = tb3
pipline_variables = (N, t1, t2, t3, thre)
(N, shortest_cycle_length, smallest_isolated_island_length, shortest_allowed_branch_length, thre) = pipline_variables
# print("Size valid :",len(valid))
valid = []
for idx,val in enumerate(tmp_Obj.w_co):
if val < thre:
valid.append(idx)
print(len(valid))
shortest_cycle_length = np.sqrt(len(valid))/shortest_cycle_length
smallest_isolated_island_length = np.sqrt(len(valid))/smallest_isolated_island_length
shortest_allowed_branch_length = np.sqrt(len(valid))/shortest_allowed_branch_length
print("shortest_allowed_branch_length",shortest_allowed_branch_length)
print("smallest_isolated_island_length",smallest_isolated_island_length)
print("shortest_cycle_length",shortest_cycle_length)
isolated_islands_pruned_graph_border, F_lines, isolated_islands = helper.create_graph(tmp_Obj, \
shortest_cycle_length, smallest_isolated_island_length,mask=valid,radius=None)
print("After graph",len([point for branch in F_lines for point in branch]))
#pdb.set_trace()
pruned_graph, removed_nodes, valid_nodes = helper.prune_branches(F_lines,isolated_islands_pruned_graph_border,\
shortest_allowed_branch_length)
print("After Pruning",len([node for branch in valid_nodes for node in branch if len(branch)>smallest_isolated_island_length]))
print("After Pruning",len([node for branch in valid_nodes for node in branch]))
#pdb.set_trace()
print("dilation and segmentation")
border_nodes = [node for branch in valid_nodes for node in branch]
dilated_border = dilate_border(Obj,border_nodes,dilation_size)
dilated_faces = get_sides(isolated_islands_pruned_graph, dilated_border)
pdb.set_trace()
print("got faces")
node_face = {}
face_nodes = []
for idx,(_,face) in enumerate(dilated_faces):
for node in face:
node_face[node] = idx
face_nodes.append(face)
# for key,value in node_face.items():
# if value>=10:
# print(value)
all_dilated = [node for _,face in dilated_faces for node in face]
all_dilated.extend([node for node in dilated_border])
left_overs = list(set(range(len(Obj.pcd.points)))-set(all_dilated))
border_left_overs = left_overs+dilated_border
expanded_faces = knn_expand(Obj,border_left_overs,node_face,face_nodes,size=5)
print("expanded")
Objects = []
for expanded_face in expanded_faces:
mask = np.isin(np.arange(0, len(Obj.pcd.points), 1).tolist(),[node for node in expanded_face])
Obj_tmp = copy(Obj)
Obj_tmp.pcd = copy(Obj.pcd)
Obj_tmp.pcd.points = o3d.utility.Vector3dVector(np.asarray(Obj.pcd.points)[mask])
Objects.append(Obj_tmp)
print("coloring")
colors = [(0,255,0) for _ in Obj.pcd.points]
for face in expanded_faces:
color = tuple(random.choices(range(256), k=3))
for point in face:
colors[point] = color
Obj.pcd.colors = o3d.utility.Vector3dVector(np.asarray(colors).astype("float") / 255.0)
# o3d.visualization.draw_geometries([Obj.pcd])
return Obj,Objects
def load_obj(Obj_url, small, large, N):
print("start")
print(Obj_url.split("_")[-1])
if Obj_url.split("_")[-1] == "0.obj":
print("big object")
if Obj_url.endswith('.obj'):
Obj = FeatureLines(Obj_url,"mesh", voxel_size=large)
else:
Obj = FeatureLines(Obj_url,voxel_size=large)
else:
print("small object")
if Obj_url.endswith('.obj'):
Obj = FeatureLines(Obj_url,"mesh", voxel_size=small)
else:
Obj = FeatureLines(Obj_url, voxel_size=small)
# print("Size :",len(Obj.pcd.points))
print("starting init")
Obj.init(int(N))
return Obj
def detect_breaking_curves(obj, pipeline_variables):
(small, large, N, to1, to2, to3, tb1, tb2, tb3, dilation_size, thre) = pipeline_variables
variables = {}
var_general = {}
var_object = {}
var_borders = {}
var_general['N'] = N
shortest_cycle_length = np.sqrt(len(obj.pcd.points))//to1
var_object['shortest_cycle_length'] = shortest_cycle_length
smallest_isolated_island_length = np.sqrt(len(obj.pcd.points))//to2
var_object['smallest_isolated_island_length'] = smallest_isolated_island_length
shortest_allowed_branch_length = np.sqrt(len(obj.pcd.points))//to3
var_object['shortest_allowed_branch_length'] = shortest_allowed_branch_length
print('Creating graph..')
isolated_islands_pruned_graph, F_lines, isolated_islands = helper.create_graph(obj, \
shortest_cycle_length, smallest_isolated_island_length)
#print("After graph",len([point for branch in F_lines for point in branch]))
print("Constructing borders..")
tmp_Obj = copy(obj)
tmp_Obj.pcd = copy(obj.pcd)
t1 = tb1
t2 = tb2
t3 = tb3
pipline_variables = (N, t1, t2, t3, thre)
(N, shortest_cycle_length, smallest_isolated_island_length, shortest_allowed_branch_length, thre) = pipline_variables
valid = []
for idx,val in enumerate(tmp_Obj.w_co):
if val < thre:
valid.append(idx)
shortest_cycle_length = np.sqrt(len(valid))/shortest_cycle_length
smallest_isolated_island_length = np.sqrt(len(valid))/smallest_isolated_island_length
shortest_allowed_branch_length = np.sqrt(len(valid))/shortest_allowed_branch_length
isolated_islands_pruned_graph_border, F_lines, isolated_islands = helper.create_graph(tmp_Obj, \
shortest_cycle_length, smallest_isolated_island_length,mask=valid,radius=None)
print("Pruning..")
pruned_graph, removed_nodes, valid_nodes = helper.prune_branches(F_lines,isolated_islands_pruned_graph_border,\
shortest_allowed_branch_length)
print("Dilating..")
border_nodes = [node for branch in valid_nodes for node in branch]
dilated_border = dilate_border(obj,border_nodes,dilation_size)
return dilated_border, isolated_islands_pruned_graph
def write_breaking_curves(obj, borders_indices, output_dir, obj_name):
border_pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(np.asarray(obj.pcd.points)[borders_indices]))
ppd = copy(obj.pcd)
p_colors = np.zeros((len(ppd.points), 3))
p_colors[:, 1] = 1
p_colors[borders_indices] = [1, 0, 0]
ppd.colors = o3d.utility.Vector3dVector(p_colors)
o3d.io.write_point_cloud(os.path.join(output_dir, f'col_borders_{obj_name}.ply'), ppd)
o3d.io.write_point_cloud(os.path.join(output_dir, f'borders_{obj_name}.ply'), border_pcd)
def segment_regions(obj, borders_indices, isolated_islands_pruned_graph):
seg_regions_indices = get_sides(isolated_islands_pruned_graph, borders_indices)
node_face = {}
face_nodes = []
for idx,(_,face) in enumerate(seg_regions_indices):
for node in face:
node_face[node] = idx
face_nodes.append(face)
all_dilated = [node for _,face in seg_regions_indices for node in face]
all_dilated.extend([node for node in borders_indices])
left_overs = list(set(range(len(obj.pcd.points)))-set(all_dilated))
border_left_overs = left_overs+borders_indices
print('Assigning border nodes..')
expanded_faces = knn_expand(obj,border_left_overs,node_face,face_nodes,size=5)
#print("expanded")
seg_parts_array = []
for f, expanded_face in enumerate(expanded_faces):
mask = np.isin(np.arange(0, len(obj.pcd.points), 1).tolist(),[node for node in expanded_face])
Obj_tmp = copy(obj)
Obj_tmp.pcd = copy(obj.pcd)
Obj_tmp.pcd.points = o3d.utility.Vector3dVector(np.asarray(obj.pcd.points)[mask])
Obj_tmp.pcd.paint_uniform_color(np.asarray(colors[f % len(colors)]).astype("float") / 255.0)
seg_parts_array.append(Obj_tmp)
print("Creating colored version..")
colored_regions = copy(obj.pcd)
regions_col = np.zeros((len(obj.pcd.points), 3))
for k, face in enumerate(expanded_faces):
for point in face:
regions_col[point] = colors[k % len(colors)]
colored_regions.colors = o3d.utility.Vector3dVector(np.asarray(regions_col).astype("float") / 255.0)
#o3d.visualization.draw_geometries([colored_regions])
#pdb.set_trace()
return seg_parts_array, seg_regions_indices, colored_regions
def write_segmented_regions(seg_parts_array, colored_regions, output_dir, obj_name):
o3d.io.write_point_cloud(os.path.join(output_dir, f'col_regions_{obj_name}.ply'), colored_regions)
saving_folder = os.path.join(output_dir, 'segmented_parts', obj_name)
os.makedirs(saving_folder, exist_ok=True)
for j, region in enumerate(seg_parts_array):
o3d.io.write_point_cloud(os.path.join(saving_folder, f'{obj_name}_part_{j}_.ply'), region.pcd)