-
Notifications
You must be signed in to change notification settings - Fork 0
/
MCTS.cpp
244 lines (237 loc) · 7.12 KB
/
MCTS.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#include <time.h>
#include <stdlib.h>
#include <vector>
#include <iostream>
#include <random>
#include <memory>
#include <functional>
#include "MCTS.h"
using namespace std;
const int dx[8] = { -1,-1,0,1,1,1,0,-1 };
const int dy[8] = { 0,1,1,1,0,-1,-1,-1 };
void MCTS_UCT::Round(int max_round)
{
int count = 0;
while (count++ < max_round)
Selection(Root);
}
vector<int> MCTS_UCT::Return_Best()
{
double weighting = 1;
Node* best_step = UCB(Root, weighting);
return best_step->this_step;
}
Node* MCTS_UCT::UCB(Node* current_node, double parameter)
{
double max_ucb = 0;
Node* best_child = current_node->children[0];
for (Node* child : current_node->children)
{
double ucb = double(child->win_simulation_time) / double(child->total_simulation_time) + parameter * sqrt(max(1.0, log2(Root->total_simulation_time)) / double(child->total_simulation_time));
if (ucb > max_ucb)
{
best_child = child;
max_ucb = ucb;
}
}
return best_child;
}
void MCTS_UCT::Selection(Node* current_node)
{
if (current_node->children.size() == 0)
{
Expansion(current_node);
}
else
{
double weighting = 1;//adjust
Selection(UCB(current_node, weighting));//random move to a child
}
return;
}
void MCTS_UCT::Expansion(Node *current_node)
{
vector<vector<int>> init = current_node->board_state;
for (int i = 0; i < current_node->Can_flip.size(); i++)//decide how many child node will be generate
{
Simulate_a_step(current_node->board_state, current_node->Can_flip[i], current_node->is_black);
Node *child_node = new Node(current_node->board_state, !(current_node->is_black));
child_node->this_step = current_node->Can_flip[i];
current_node->board_state = init;
current_node->children.push_back(child_node);
child_node->fatherNode = current_node;
Simulation(child_node);
}
}
void MCTS_UCT::Simulation(Node *current_node)
{
bool result = Playout(current_node->board_state, current_node->is_black);
Backpropagation(current_node, result);
}
void MCTS_UCT::Backpropagation(Node *current_node, bool result)
{
current_node->total_simulation_time += 1;
current_node->win_simulation_time += result;
if (current_node != Root)
Backpropagation(current_node->fatherNode, result);
}
bool MCTS_UCT::Playout(vector<vector<int>> board, bool is_black)
{
bool current_player = is_black;
bool both_no_flip = 0;
vector<vector<int>> unoccupied;
for (int i = 0; i < 8; i++)
for (int j = 0; j < 8; j++)
if (board[i][j] == 0)
unoccupied.push_back({ i,j });
while (!unoccupied.empty())
{
vector<vector<int>> Can_flip = GetFlipPosition(board, unoccupied, current_player);
if (Can_flip.empty())//If both are no position to put?
{
if (both_no_flip)break;
current_player = !current_player;
both_no_flip = 1;
continue;
}
both_no_flip = 0;
uniform_int_distribution<int> distribution(0, Can_flip.size() - 1);
int rand_pick = distribution(generator);
for (int i = 0; i < unoccupied.size(); i++)
if (Can_flip[rand_pick] == unoccupied[i])
{
unoccupied.erase(unoccupied.begin() + i);
break;
}
Simulate_a_step(board, Can_flip[rand_pick], current_player);
current_player = !current_player;
}
int result = 0;
for (int i = 0; i < 8; i++)
for (int j = 0; j < 8; j++)
{
if (board[i][j])
{
if (board[i][j] + is_black == 2) result++;
else result--;
}
}
return (result > 0) ? 1 : 0;
}
bool check(int x, int y)//Check whether the location exceed the board.
{
return 0 <= x && x < 8 && 0 <= y && y < 8;
}
void Simulate_a_step(vector<vector<int>>& Board, vector<int> position, bool is_black)//Simulate out step
{
Board[position[0]][position[1]] = (is_black) ? 1 : 2;
for (int i = 0; i < 8; i++)
{
int x = position[0] + dx[i];
int y = position[1] + dy[i];
if (is_black)
{
while (check(x, y) && Board[x][y] == 2)
{
x += dx[i];
y += dy[i];
}
if (check(x, y) && Board[x][y] == 1)
{
x -= dx[i];
y -= dy[i];
while (Board[x][y] == 2)
{
Board[x][y] = 1;
x -= dx[i];
y -= dy[i];
}
}
}
else
{
while (check(x, y) && Board[x][y] == 1)
{
x += dx[i];
y += dy[i];
}
if (check(x, y) && Board[x][y] == 2)
{
x -= dx[i];
y -= dy[i];
while (Board[x][y] == 1)
{
Board[x][y] = 2;
x -= dx[i];
y -= dy[i];
}
}
}
}
}
void print_board(vector<vector<int>> board)
{
for (int i = 0; i < board.size(); i++)
{
for (int j = 0; j < board[0].size(); j++)
{
if (board[i][j] == 0) cout << "- ";
if (board[i][j] == 1) cout << "O ";
if (board[i][j] == 2) cout << "X ";
}
cout << endl;
}
return;
}
vector<vector<int>> GetFlipPosition(vector<vector<int>>& Board, vector<vector<int>> unoccupied_position, bool is_black)
{
if (unoccupied_position.empty())
{
for (int i = 0; i < 8; i++)
for (int j = 0; j < 8; j++)
if (!Board[i][j])
unoccupied_position.push_back({ i,j });
}
vector<vector<int>> FlipPosition;
for (vector<int> position : unoccupied_position)
{
int i = position[0];
int j = position[1];
for (int k = 0; k < 8; k++)
{
int ii = i + dx[k], jj = j + dy[k];
if (check(ii, jj))
{
if (Board[ii][jj] == 2 && is_black)
{
while (check(ii, jj) && Board[ii][jj] == 2)
{
ii += dx[k];
jj += dy[k];
}
if (check(ii, jj) && Board[ii][jj] == 1)
{
vector<int> temp = { i,j };
FlipPosition.push_back(temp);
break;
}
}
else if (Board[ii][jj] == 1 && !is_black)
{
while (check(ii, jj) && Board[ii][jj] == 1)
{
ii += dx[k];
jj += dy[k];
}
if (check(ii, jj) && Board[ii][jj] == 2)
{
vector<int> temp = { i,j };
FlipPosition.push_back(temp);
break;
}
}
}
}
}
return FlipPosition;
}