@@ -82,11 +82,23 @@ pip install rapid-table-det-paddle (默认安装gpu版本,可以自行覆盖
82
82
```
83
83
``` python
84
84
from rapid_table_det_paddle.inference import TableDetector
85
+
86
+ img_path = f " tests/test_files/chip.jpg "
87
+
85
88
table_det = TableDetector(
86
89
obj_model_path = " models/obj_det_paddle" ,
87
90
edge_model_path = " models/edge_det_paddle" ,
88
91
cls_model_path = " models/cls_det_paddle" ,
92
+ use_obj_det = True ,
93
+ use_edge_det = True ,
94
+ use_cls_det = True ,
89
95
)
96
+ result, elapse = table_det(img_path)
97
+ obj_det_elapse, edge_elapse, rotate_det_elapse = elapse
98
+ print (
99
+ f " obj_det_elapse: { obj_det_elapse} , edge_elapse= { edge_elapse} , rotate_det_elapse= { rotate_det_elapse} "
100
+ )
101
+ # 一张图片中可能有多个表格
90
102
# img = img_loader(img_path)
91
103
# file_name_with_ext = os.path.basename(img_path)
92
104
# file_name, file_ext = os.path.splitext(file_name_with_ext)
@@ -103,6 +115,7 @@ table_det = TableDetector(
103
115
# wrapped_img = extract_table_img(extract_img.copy(), lt, rt, rb, lb)
104
116
# cv2.imwrite(f"{out_dir}/{file_name}-extract-{i}.jpg", wrapped_img)
105
117
# cv2.imwrite(f"{out_dir}/{file_name}-visualize.jpg", img)
118
+
106
119
```
107
120
#### 参数说明
108
121
mode: str 模式,onnx包默认使用onnx_tiny,可选 onnx, paddle包唯一使用paddle \
0 commit comments