-
Notifications
You must be signed in to change notification settings - Fork 22
/
train.py
268 lines (222 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import sys
import torch
import argparse
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import cv2
import numpy as np
import PIL
from PIL import Image
import time
import logging
import argparse
from efficientnet_lite import efficientnet_lite_params, build_efficientnet_lite
from utils.train_utils import accuracy, AvgrageMeter, CrossEntropyLabelSmooth, save_checkpoint, get_lastest_model, get_parameters
CROP_PADDING = 32
MEAN_RGB = [0.498, 0.498, 0.498]
STDDEV_RGB = [0.502, 0.502, 0.502]
class DataIterator(object):
def __init__(self, dataloader):
self.dataloader = dataloader
self.iterator = enumerate(self.dataloader)
def next(self):
try:
_, data = next(self.iterator)
except Exception:
self.iterator = enumerate(self.dataloader)
_, data = next(self.iterator)
return data[0], data[1]
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='efficientnet_lite0', help='name of model: efficientnet_lite0, 1, 2, 3, 4')
parser.add_argument('--eval', default=False, action='store_true')
parser.add_argument('--eval_resume', type=str, default='./efficientnet_lite0.pth', help='path for eval model')
parser.add_argument('--batch_size', type=int, default=1024, help='batch size')
parser.add_argument('--total_iters', type=int, default=300000, help='total iters')
parser.add_argument('--learning_rate', type=float, default=0.5, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=4e-5, help='weight decay')
parser.add_argument('--save', type=str, default='./models', help='path for saving trained models')
parser.add_argument('--num_classes', type=int, default=1000, help='number of classes')
parser.add_argument('--num_workers', type=int, default=8, help='number of dataloader workers')
parser.add_argument('--label_smooth', type=float, default=0.1, help='label smoothing')
parser.add_argument('--auto_continue', type=bool, default=True, help='auto continue')
parser.add_argument('--display_interval', type=int, default=20, help='display interval')
parser.add_argument('--val_interval', type=int, default=10000, help='val interval')
parser.add_argument('--save_interval', type=int, default=10000, help='save interval')
parser.add_argument('--train_dir', type=str, default='data/train', help='path to training dataset')
parser.add_argument('--val_dir', type=str, default='data/val', help='path to validation dataset')
args = parser.parse_args()
return args
def main():
args = get_args()
# Log
log_format = '[%(asctime)s] %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%d %I:%M:%S')
t = time.time()
local_time = time.localtime(t)
if not os.path.exists('./log'):
os.mkdir('./log')
fh = logging.FileHandler(os.path.join('log/train-{}{:02}{}'.format(local_time.tm_year % 2000, local_time.tm_mon, t)))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
input_size = efficientnet_lite_params[args.model_name][2]
use_gpu = False
if torch.cuda.is_available():
use_gpu = True
assert os.path.exists(args.train_dir)
train_dataset = datasets.ImageFolder(
args.train_dir,
transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
transforms.Normalize(MEAN_RGB, STDDEV_RGB)
])
)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=use_gpu)
train_dataprovider = DataIterator(train_loader)
assert os.path.exists(args.val_dir)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(args.val_dir, transforms.Compose([
transforms.Resize(input_size + CROP_PADDING, interpolation=PIL.Image.BICUBIC),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize(MEAN_RGB, STDDEV_RGB)
])),
batch_size=200,
shuffle=False,
num_workers=args.num_workers,
pin_memory=use_gpu
)
val_dataprovider = DataIterator(val_loader)
print('load data successfully')
model = build_efficientnet_lite(args.model_name, args.num_classes)
optimizer = torch.optim.SGD(get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
criterion_smooth = CrossEntropyLabelSmooth(1000, 0.1)
if use_gpu:
model = nn.DataParallel(model)
loss_function = criterion_smooth.cuda()
device = torch.device("cuda")
else:
loss_function = criterion_smooth
device = torch.device("cpu")
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
lambda step : (1.0-step/args.total_iters) if step <= args.total_iters else 0, last_epoch=-1)
model = model.to(device)
all_iters = 0
if args.auto_continue:
lastest_model, iters = get_lastest_model()
if lastest_model is not None:
all_iters = iters
checkpoint = torch.load(lastest_model, map_location=None if use_gpu else 'cpu')
model.load_state_dict(checkpoint['state_dict'], strict=True)
print('load from checkpoint')
for i in range(iters):
scheduler.step()
args.optimizer = optimizer
args.loss_function = loss_function
args.scheduler = scheduler
args.train_dataprovider = train_dataprovider
args.val_dataprovider = val_dataprovider
if args.eval:
if args.eval_resume is not None:
checkpoint = torch.load(args.eval_resume, map_location=None if use_gpu else 'cpu')
load_checkpoint(model, checkpoint)
validate(model, device, args, all_iters=all_iters)
exit(0)
while all_iters < args.total_iters:
all_iters = train(model, device, args, val_interval=args.val_interval, bn_process=False, all_iters=all_iters)
validate(model, device, args, all_iters=all_iters)
all_iters = train(model, device, args, val_interval=int(1280000/args.batch_size), bn_process=True, all_iters=all_iters)
validate(model, device, args, all_iters=all_iters)
save_checkpoint({'state_dict': model.state_dict(),}, args.total_iters, tag='bnps-')
def adjust_bn_momentum(model, iters):
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.momentum = 1 / iters
def train(model, device, args, *, val_interval, bn_process=False, all_iters=None):
optimizer = args.optimizer
loss_function = args.loss_function
scheduler = args.scheduler
train_dataprovider = args.train_dataprovider
t1 = time.time()
Top1_err, Top5_err = 0.0, 0.0
model.train()
for iters in range(1, val_interval + 1):
scheduler.step()
if bn_process:
adjust_bn_momentum(model, iters)
all_iters += 1
d_st = time.time()
data, target = train_dataprovider.next()
target = target.type(torch.LongTensor)
data, target = data.to(device), target.to(device)
data_time = time.time() - d_st
output = model(data)
loss = loss_function(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
prec1, prec5 = accuracy(output, target, topk=(1, 5))
Top1_err += 1 - prec1.item() / 100
Top5_err += 1 - prec5.item() / 100
if all_iters % args.display_interval == 0:
printInfo = 'TRAIN Iter {}: lr = {:.6f},\tloss = {:.6f},\t'.format(all_iters, scheduler.get_lr()[0], loss.item()) + \
'Top-1 err = {:.6f},\t'.format(Top1_err / args.display_interval) + \
'Top-5 err = {:.6f},\t'.format(Top5_err / args.display_interval) + \
'data_time = {:.6f},\ttrain_time = {:.6f}'.format(data_time, (time.time() - t1) / args.display_interval)
logging.info(printInfo)
t1 = time.time()
Top1_err, Top5_err = 0.0, 0.0
if all_iters % args.save_interval == 0:
save_checkpoint({
'state_dict': model.state_dict(),
}, all_iters)
return all_iters
def validate(model, device, args, *, all_iters=None):
objs = AvgrageMeter()
top1 = AvgrageMeter()
top5 = AvgrageMeter()
loss_function = args.loss_function
val_dataprovider = args.val_dataprovider
model.eval()
max_val_iters = 250
t1 = time.time()
with torch.no_grad():
for _ in range(1, max_val_iters + 1):
data, target = val_dataprovider.next()
target = target.type(torch.LongTensor)
data, target = data.to(device), target.to(device)
output = model(data)
loss = loss_function(output, target)
prec1, prec5 = accuracy(output, target, topk=(1, 5))
n = data.size(0)
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
logInfo = 'TEST Iter {}: loss = {:.6f},\t'.format(all_iters, objs.avg) + \
'Top-1 err = {:.6f},\t'.format(1 - top1.avg / 100) + \
'Top-5 err = {:.6f},\t'.format(1 - top5.avg / 100) + \
'val_time = {:.6f}'.format(time.time() - t1)
logging.info(logInfo)
def load_checkpoint(net, checkpoint):
from collections import OrderedDict
temp = OrderedDict()
if 'state_dict' in checkpoint:
checkpoint = dict(checkpoint['state_dict'])
for k in checkpoint:
k2 = 'module.'+k if not k.startswith('module.') else k
temp[k2] = checkpoint[k]
net.load_state_dict(temp, strict=True)
if __name__ == "__main__":
main()