-
Notifications
You must be signed in to change notification settings - Fork 83
/
run.py
127 lines (99 loc) · 4.55 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import shutil
import matplotlib
import numpy as np
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
from tqdm import tqdm, trange
matplotlib.use('Agg')
from matplotlib import pyplot as plt
from clr import CyclicLR
def train(model, loader, epoch, optimizer, criterion, device, dtype, batch_size, log_interval, scheduler):
model.train()
correct1, correct5 = 0, 0
for batch_idx, (data, target) in enumerate(tqdm(loader)):
if isinstance(scheduler, CyclicLR):
scheduler.batch_step()
data, target = data.to(device=device, dtype=dtype), target.to(device=device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
corr = correct(output, target, topk=(1, 5))
correct1 += corr[0]
correct5 += corr[1]
if batch_idx % log_interval == 0:
tqdm.write(
'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}. '
'Top-1 accuracy: {:.2f}%({:.2f}%). '
'Top-5 accuracy: {:.2f}%({:.2f}%).'.format(epoch, batch_idx, len(loader),
100. * batch_idx / len(loader), loss.item(),
100. * corr[0] / batch_size,
100. * correct1 / (batch_size * (batch_idx + 1)),
100. * corr[1] / batch_size,
100. * correct5 / (batch_size * (batch_idx + 1))))
return loss.item(), correct1 / len(loader.dataset), correct5 / len(loader.dataset)
def test(model, loader, criterion, device, dtype):
model.eval()
test_loss = 0
correct1, correct5 = 0, 0
for batch_idx, (data, target) in enumerate(tqdm(loader)):
data, target = data.to(device=device, dtype=dtype), target.to(device=device)
with torch.no_grad():
output = model(data)
test_loss += criterion(output, target).item() # sum up batch loss
corr = correct(output, target, topk=(1, 5))
correct1 += corr[0]
correct5 += corr[1]
test_loss /= len(loader)
tqdm.write(
'\nTest set: Average loss: {:.4f}, Top1: {}/{} ({:.2f}%), '
'Top5: {}/{} ({:.2f}%)'.format(test_loss, int(correct1), len(loader.dataset),
100. * correct1 / len(loader.dataset), int(correct5),
len(loader.dataset), 100. * correct5 / len(loader.dataset)))
return test_loss, correct1 / len(loader.dataset), correct5 / len(loader.dataset)
def correct(output, target, topk=(1,)):
"""Computes the correct@k for the specified values of k"""
maxk = max(topk)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t().type_as(target)
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0).item()
res.append(correct_k)
return res
def save_checkpoint(state, is_best, filepath='./', filename='checkpoint.pth.tar'):
save_path = os.path.join(filepath, filename)
best_path = os.path.join(filepath, 'model_best.pth.tar')
torch.save(state, save_path)
if is_best:
shutil.copyfile(save_path, best_path)
def find_bounds_clr(model, loader, optimizer, criterion, device, dtype, min_lr=8e-6, max_lr=8e-5, step_size=2000,
mode='triangular', save_path='.'):
model.train()
correct1, correct5 = 0, 0
scheduler = CyclicLR(optimizer, base_lr=min_lr, max_lr=max_lr, step_size=step_size, mode=mode)
epoch_count = step_size // len(loader) # Assuming step_size is multiple of batch per epoch
accuracy = []
for _ in trange(epoch_count):
for batch_idx, (data, target) in enumerate(tqdm(loader)):
if scheduler is not None:
scheduler.batch_step()
data, target = data.to(device=device, dtype=dtype), target.to(device=device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
corr = correct(output, target)
accuracy.append(corr[0] / data.shape[0])
lrs = np.linspace(min_lr, max_lr, step_size)
plt.plot(lrs, accuracy)
plt.show()
plt.savefig(os.path.join(save_path, 'find_bounds_clr.png'))
np.save(os.path.join(save_path, 'acc.npy'), accuracy)
return