-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathescape_use.py
304 lines (273 loc) · 8.54 KB
/
escape_use.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import motor
import led
import utime
import gyro
import tof
import lightsensor
import button
import grappler
import color
import escape_room
# tof.ONE = upper
# tof.THREE = lower
BALL_ALIVE = 1
BALL_DEAD = 2
def sign(x: float):
if x > 0:
return 1
elif x < 0:
return -1
else:
return 0
def is_outside():
lightsensor.measure_white()
lightsensor.measure_reflective()
# return False
return lightsensor.silver()[0] or lightsensor.silver()[1] or not lightsensor.all_white()
def get_angle(angle: float, base_v: int, res=True):
def inner() -> bool:
gyro.update()
return abs(gyro.angle[2]) > angle
motor.stop(motor.MOT_AB)
if res:
gyro.reset()
angle = angle - gyro.angle[2] # relative angle is better
s = sign(angle)
angle *= s
motor.drive(motor.MOT_A, s * base_v)
motor.drive(motor.MOT_B, -s * base_v)
return inner
def get_timeout(t: int):
def inner() -> bool:
return utime.ticks_ms() > end
end = utime.ticks_ms() + t
return inner
def just_drive_angle(angle: float, t: int, res=True):
# print("in just_drive_angle", angle)
a = get_angle(angle, 70, res)
timeout = get_timeout(t)
while not a() and not timeout():
pass
motor.stop(motor.MOT_AB)
def just_drive_forward(t: int, rev = 1):
motor.drive(motor.MOT_AB, rev * 70)
timeout = get_timeout(t)
while not timeout():
pass
motor.stop(motor.MOT_AB)
def try_scan() -> list[tuple[float, float, float]]:
led.set_status_locked(2, led.RED)
angle = get_angle(angle=-180.0, base_v=57)
time_out = get_timeout(t=9000)
data = []
while not angle() and not time_out():
tof.set(tof.ONE)
upper = tof.read()
tof.set(tof.THREE)
lower = tof.read()
data.append((upper, lower, gyro.angle[2]))
print('test', (upper, lower, upper-lower))
just_drive_angle(-gyro.angle[2], 4500)
motor.stop(motor.MOT_AB)
led.set_status_locked(2, led.GREEN)
return data
def try_scan_and_break() -> tuple[bool, float]:
led.set_status_locked(2, led.RED)
angle = get_angle(angle=-180.0, base_v=57)
time_out = get_timeout(t=9000)
while not angle() and not time_out():
tof.set(tof.ONE)
upper = tof.read()
tof.set(tof.THREE)
lower = tof.read()
# data.append((upper, lower, gyro.angle[2]))
if check_diff_one((upper, lower, gyro.angle[2])):
motor.stop(motor.MOT_AB)
tof.set(tof.ONE)
upper_now = tof.read()
if check_diff_one((upper_now, lower, gyro.angle[2])):
return (True, lower)
else:
angle = get_angle(angle=-180.0, base_v=57, res=False)
just_drive_angle(-gyro.angle[2], 4500)
motor.stop(motor.MOT_AB)
led.set_status_locked(2, led.GREEN)
return (False, 0.0)
def try_scan_stopping() -> list[tuple[float, float, float]]:
led.set_status_locked(2, led.RED)
gyro.reset()
data = []
for i in range(0, 181, 5):
i = float(i)
just_drive_angle(i, 200, res=False)
motor.stop(motor.MOT_AB)
tof.set(tof.ONE)
upper = tof.read()
tof.set(tof.THREE)
lower = tof.read()
data.append((upper, lower, i))
return data
def check_diff(data: list[tuple[float, float, float]]) -> tuple[float, float]:
LIMIT_DIFF = 200.0
OUT_OF_MAP_LIMIT = 1500.0
max_diff = LIMIT_DIFF
angle = 0.0
distance = 0.0
# print('test', data[:10])
for i in range(len(data)):
if data[i][0] - data[i][1] > max_diff and data[i][0] < OUT_OF_MAP_LIMIT:
max_diff = data[i][0] - data[i][1]
angle = data[i][2]
distance = data[i][1]
return angle, distance
def check_diff_one(data: tuple[float, float, float]):
LIMIT_DIFF = 150.0
OUT_OF_MAP_LIMIT = 1500.0
return data[0] < OUT_OF_MAP_LIMIT and data[0] - data[1] > LIMIT_DIFF
def get_lowest(data: list[tuple[float, float, float]]) -> float:
lowest = 4000.0
lowest_angle = -1.0
for i in range(len(data)):
if data[i][0] < lowest:
lowest = data[i][0]
lowest_angle = data[i][2]
# print("in get_lowest")
# print("data: ", data)
# print("lowest_angle", lowest_angle)
return lowest_angle
def allign_with_wall():
just_drive_angle(90, 1000)
just_drive_forward(1500)
just_drive_forward(1000, rev=-1)
just_drive_angle(-90, 1000)
def drive_at_wall(t: int):
led.set_status_locked(2, led.PURPLE)
tof.set(tof.FOUR)
if tof.read() < 400:
allign_with_wall()
# fahren
tof.set(tof.ONE)
motor.drive(motor.MOT_AB, 50)
timeout = get_timeout(t)
while not timeout():
if is_outside():
just_drive_forward(700, rev=-1)
just_drive_angle(-90.0, 1000)
if not button.right.value() or not button.left.value() or tof.read() < 200:
just_drive_forward(300, rev=-1)
just_drive_angle(-90.0, 1000)
motor.stop(motor.MOT_AB)
def pick_ball(ball_angle: float, distance: float) -> int:
just_drive_angle(ball_angle -10, 3000)
motor.stop(motor.MOT_AB)
led.set_status_locked(2, led.YELLOW)
# utime.sleep_ms(1500)
# grappler runter und aufmachen :)
grappler.loose()
grappler.down()
motor.drive(motor.MOT_AB, 50)
timeout = get_timeout(int(distance * 4 + 1000))
while not timeout():
if is_outside():
break
motor.stop(motor.MOT_AB)
# grappler zu und hoch!!!
grappler.grab()
grappler.loose()
tof.set(tof.THREE)
# if tof.read() > 100:
# return False
# else:11
grappler.grab()
grappler.up()
utime.sleep_ms(300)
# check with metal sens
if button.read_metal():
return BALL_ALIVE
else:
return BALL_DEAD
# return BALL_ALIVE
def wall_opt(dist: float):
tof.set(tof.FOUR)
diff0 = tof.read()
if diff0 - 50 < dist:
just_drive_angle(90.0, 1000)
just_drive_forward(300)
just_drive_angle(-90.0, 1000)
elif diff0 + 50 > dist:
just_drive_angle(-90.0, 1000)
just_drive_forward(300, rev=-1)
just_drive_angle(90.0, 1000)
diff1 = tof.read()
just_drive_forward(300)
diff2 = tof.read()
just_drive_forward(300, rev=-1)
just_drive_angle(diff2 - diff1, 1000)
def wall_bounce_allign():
while button.left.value():
just_drive_forward(400, rev=-1)
just_drive_angle(-10, 700)
just_drive_forward(600)
def drop_ball(ball_type: int):
# an der wand ausrichten
timeout = get_timeout(6000)
motor.drive(motor.MOT_AB, 70)
while not timeout() and button.left.value() and button.right.value():
if is_outside():
just_drive_forward(1000, rev=-1)
just_drive_angle(-90.0, 1000)
return drop_ball(ball_type)
print('walll')
motor.drive(motor.MOT_A, 90)
motor.drive(motor.MOT_B, 50)
utime.sleep_ms(1500)
motor.drive(motor.MOT_A, 50)
motor.drive(motor.MOT_B, 90)
utime.sleep_ms(1500)
print('allign')
while True:
motor.drive(motor.MOT_AB, 70)
while not is_outside() and button.left.value() and button.right.value():
pass
motor.stop(motor.MOT_AB)
if not is_outside():
gyro.reset()
just_drive_forward(300, rev=-1)
motor.drive(motor.MOT_A, 90)
motor.drive(motor.MOT_B, 50)
utime.sleep_ms(2000)
lightsensor.measure_front()
if (color.get_front() == lightsensor.RED and ball_type == BALL_DEAD) or (color.get_front() == lightsensor.GREEN and ball_type == BALL_ALIVE):
grappler.down()
grappler.loose()
return
else:
just_drive_forward(300, rev=-1)
else:
just_drive_forward(1000, rev=-1)
just_drive_angle(90.0, 1000)
# return drop_ball(ball_type)
just_drive_forward(500, rev=-1)
just_drive_angle(-90.0, 1000)
def drive_in_room():
just_drive_forward(700)
just_drive_angle(90, 1000)
just_drive_forward(700)
def run():
drive_in_room()
counter = 0
timeout = get_timeout(270_000)
while not timeout():
drive_at_wall(1200)
flag, dist = try_scan_and_break()
if flag:
ball_type = pick_ball(0.0, dist)
if ball_type:
utime.sleep_ms(5000)
drop_ball(ball_type)
counter += 1
if counter >= 3:
grappler.throw()
return
if __name__ == '__main__':
drop_ball(BALL_ALIVE)