-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_AE.py
45 lines (37 loc) · 1.34 KB
/
train_AE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
from torch_geometric.data import DataLoader
from chamfer_distance import ChamferDistance
from Compeletion3D import Completion3D
from Models import SaNet
def train():
model.train()
total_loss = 0
step = 0
for data in train_loader:
step += 1
data = data.to(device)
optimizer.zero_grad()
decoded, _ = model(data)
dist1, dist2 = criterion(decoded.reshape(-1,2048,3), data.y.reshape(-1,2048,3))
loss = (torch.mean(dist1)) + (torch.mean(dist2))
loss.backward()
total_loss += loss.item() * data.num_graphs
optimizer.step()
return total_loss / len(dataset)
if __name__ == '__main__':
dataset = Completion3D('../data/Completion3D', split='train', categories='Airplane')
print(dataset[0])
train_loader = DataLoader(
dataset, batch_size=32, shuffle=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = SaNet().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
print(model)
print('Training started:')
criterion = ChamferDistance()
for epoch in range(1, 401):
loss = train()
print('Epoch {:03d}, Loss: {:.4f}'.format(
epoch, loss))
if epoch % 10 ==0:
torch.save(model.state_dict(),'./trained/SA_net_Ch'+'{}'.format(epoch)+'.pt')