-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathCompeletion3D.py
142 lines (116 loc) · 4.63 KB
/
Compeletion3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from torch_geometric.datasets import shapenet
from torch_geometric.data import (Data, InMemoryDataset, download_url,
extract_zip)
import os
import os.path as osp
import shutil
import torch
import h5py
import re
from multiprocessing import Pool
class Completion3D(InMemoryDataset):
url = ('http://download.cs.stanford.edu/downloads/completion3d/dataset2019.zip')
category_ids = {
'Airplane': '02691156',
'Bag': '02773838',
'Cap': '02954340',
'Car': '02958343',
'Chair': '03001627',
'Earphone': '03261776',
'Guitar': '03467517',
'Knife': '03624134',
'Lamp': '03636649',
'Laptop': '03642806',
'Motorbike': '03790512',
'Mug': '03797390',
'Pistol': '03948459',
'Rocket': '04099429',
'Skateboard': '04225987',
'Table': '04379243',
}
def __init__(self, root, categories=None,
split='train', transform=None, pre_transform=None,
pre_filter=None):
if categories is None:
categories = list(self.category_ids.keys())
if isinstance(categories, str):
categories = [categories]
assert all(category in self.category_ids for category in categories)
self.categories = categories
super(Completion3D, self).__init__(root, transform, pre_transform,
pre_filter)
if split == 'train':
path = self.processed_paths[0]
elif split == 'val':
path = self.processed_paths[1]
elif split == 'test':
path = self.processed_paths[2]
elif split == 'trainval':
path = self.processed_paths[3]
else:
raise ValueError((f'Split {split} found, but expected either '
'train, val, trainval or test'))
self.data, self.slices = torch.load(path)
def files_in_subdirs(self, top_dir, search_pattern):
regex = re.compile(search_pattern)
for path, _, files in os.walk(top_dir):
for name in files:
full_name = osp.join(path, name)
if regex.search(full_name):
yield full_name
@property
def raw_file_names(self):
return ['train','test','val']
def download(self):
path = download_url(self.url, self.root)
extract_zip(path, self.root)
# os.unlink(path)
shutil.rmtree(self.raw_dir)
name = 'shapenet'
os.rename(osp.join(self.root, name), self.raw_dir)
@property
def processed_file_names(self):
cats = '_'.join([cat[:3].lower() for cat in self.categories])
return [
os.path.join('{}_{}.pt'.format(cats, split))
for split in ['train']
]
def load_h5(self, path):
with h5py.File(path, 'r') as f:
data_key = list(f.keys())[0]
data = torch.tensor(f[data_key],dtype=torch.float32)
return data
def process_filenames(self, filenames):
data_list = []
print(len(filenames))
categories_ids = [self.category_ids[cat] for cat in self.categories]
pool = Pool(10)
print(len(filenames))
for i, data in enumerate(pool.imap(self.load_h5, filenames)):
data_list.append(data)
print(i)
# for i,name in enumerate(filenames):
# cat = name.split(osp.sep)[-2]
# if cat not in categories_ids:
# continue
# data_list.append(self.load_h5(name))
pool.close()
pool.join()
return data_list
def process(self, file_names=None):
data_list = []
for i, split in enumerate(['train']):
for cat in self.categories:
print(split)
path_gt = osp.join(self.raw_dir,split,'gt',self.category_ids[cat])
file_names_gt = [f for f in self.files_in_subdirs(path_gt, '.h5')]
data_list_gt = self.process_filenames(file_names_gt)
path_partial = osp.join(self.raw_dir, split, 'partial', self.category_ids[cat])
file_names_partial = [f for f in self.files_in_subdirs(path_partial, '.h5')]
data_list_partial = self.process_filenames(file_names_partial)
for gt, par in zip(data_list_gt, data_list_partial):
data_list += [Data(pos=par, y=gt, category=cat)]
torch.save(self.collate(data_list), self.processed_paths[i])
if __name__ == '__main__':
train_dataset = Completion3D('../data/Completion3D', split='train', categories='Airplane')
print(train_dataset)