forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_quant_post_quant_aware.py
154 lines (138 loc) · 5.5 KB
/
test_quant_post_quant_aware.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import sys
import random
sys.path.append("../")
import unittest
import paddle
from paddleslim.quant import quant_aware, convert
from paddleslim.quant import quant_aware, convert
from static_case import StaticCase
sys.path.append("../demo")
from models import MobileNet
from layers import conv_bn_layer
import numpy as np
np.random.seed(0)
random.seed(0)
paddle.seed(0)
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
enc_input = np.random.random([4, 128]).astype('float32')
attn_mask = np.random.random([2, 4, 4]).astype('float32')
label = np.random.randint(0, 2, (1, )).astype('int64')
return enc_input, attn_mask, label
def __len__(self):
return self.num_samples
class TestQuantPostQuantAwareCase1(StaticCase):
def test_accuracy(self):
def simple_transformer(enc_input, attn_mask):
encoder_layer = paddle.nn.TransformerEncoderLayer(128, 2, 512)
encoder = paddle.nn.TransformerEncoder(encoder_layer, 2)
encoder_output = encoder(enc_input, attn_mask)
first_token = encoder_output[:, 0]
bias = paddle.full(shape=[1, 128], fill_value=1e-6)
linear = paddle.nn.Linear(128, 2)
logits = linear(first_token + bias)
return logits
enc_input = paddle.static.data(
name='enc_input', shape=[None, 4, 128], dtype='float32')
attn_mask = paddle.static.data(
name='attn_mask', shape=[None, 2, 4, 4], dtype='float32')
label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
out = simple_transformer(enc_input, attn_mask)
cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label)
avg_cost = paddle.mean(x=cost)
acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
optimizer = paddle.optimizer.Momentum(
momentum=0.9,
learning_rate=0.01,
weight_decay=paddle.regularizer.L2Decay(4e-5))
optimizer.minimize(avg_cost)
main_prog = paddle.static.default_main_program()
val_prog = main_prog.clone(for_test=True)
place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda(
) else paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
train_dataset = RandomDataset(100)
test_dataset = RandomDataset(50)
train_loader = paddle.io.DataLoader(
train_dataset,
places=place,
feed_list=[enc_input, attn_mask, label],
drop_last=True,
return_list=False,
batch_size=10)
valid_loader = paddle.io.DataLoader(
test_dataset,
places=place,
feed_list=[enc_input, attn_mask, label],
batch_size=10,
return_list=False)
def train(program):
iter = 0
for data in train_loader():
cost, top1 = exe.run(program,
feed=data,
fetch_list=[avg_cost, acc_top1])
iter += 1
if iter % 100 == 0:
print('train iter={}, avg loss {}, acc_top1 {}'.format(
iter, cost, top1))
def test(program):
iter = 0
result = [[], []]
for data in valid_loader():
cost, top1 = exe.run(program,
feed=data,
fetch_list=[avg_cost, acc_top1])
iter += 1
if iter % 100 == 0:
print('eval iter={}, avg loss {}, acc_top1 {}'.format(
iter, cost, top1))
result[0].append(cost)
result[1].append(top1)
print(' avg loss {}, acc_top1 {}'.format(
np.mean(result[0]), np.mean(result[1])))
return np.mean(result[1])
train(main_prog)
top1_1 = test(main_prog)
config = {
'weight_quantize_type': 'channel_wise_abs_max',
'activation_quantize_type': 'moving_average_abs_max',
'quantize_op_types':
['conv2d', 'depthwise_conv2d', 'mul', 'matmul', 'elementwise_add'],
'quant_post_first': True,
'scale_trainable': True
}
calib_config = {
'data_loader': valid_loader,
'algo': 'abs_max',
'feed_list': ['enc_input', 'attn_mask', 'label'],
'fetch_list': [avg_cost, acc_top1]
}
quant_eval_prog, scale_dict, _, _ = quant_aware(
val_prog,
place,
config,
for_test=True,
calib_config=calib_config,
model_type='transformer',
return_scale_dict=True)
quant_train_prog = quant_aware(
main_prog,
place,
config,
for_test=False,
calib_config=calib_config,
return_program=True,
scale_dict=scale_dict,
model_type='transformer')
train(quant_train_prog)
quant_eval_prog = convert(quant_eval_prog, place, config)
top1_2 = test(quant_eval_prog)
# values before quantization and after quantization should be close
print("before quantization: top1: {}".format(top1_1))
print("after quantization: top1: {}".format(top1_2))
if __name__ == '__main__':
unittest.main()