forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_pruned_model_save_load.py
116 lines (107 loc) · 4.82 KB
/
test_pruned_model_save_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle
from paddleslim.prune import Pruner, save_model, load_model
from layers import conv_bn_layer
from static_case import StaticCase
import numpy as np
import numpy
class TestSaveAndLoad(StaticCase):
def test_prune(self):
train_program = paddle.static.Program()
startup_program = paddle.static.Program()
with paddle.static.program_guard(train_program, startup_program):
input = paddle.static.data(name="image", shape=[None, 3, 16, 16])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
feature = paddle.reshape(conv6, [-1, 128, 16])
predict = paddle.static.nn.fc(feature, 10, activation='softmax')
label = paddle.static.data(
name='label', shape=[None, 1], dtype='int64')
print(label.shape)
print(predict.shape)
cost = paddle.nn.functional.cross_entropy(
input=predict, label=label)
avg_cost = paddle.mean(x=cost)
adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01)
adam_optimizer.minimize(avg_cost)
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
scope = paddle.static.global_scope()
exe.run(startup_program, scope=scope)
criterion = 'bn_scale'
pruner = Pruner(criterion)
main_program, _, _ = pruner.prune(
train_program,
scope,
params=["conv4_weights"],
ratios=[0.5],
place=place,
lazy=False,
only_graph=False,
param_backup=None,
param_shape_backup=None)
x = numpy.random.random(size=(10, 3, 16, 16)).astype('float32')
label = numpy.random.random(size=(10, 1)).astype('int64')
loss_data, = exe.run(train_program,
feed={"image": x,
"label": label},
fetch_list=[cost.name])
save_model(exe, main_program, 'model_file')
pruned_program = paddle.static.Program()
pruned_startup_program = paddle.static.Program()
with paddle.static.program_guard(pruned_program,
pruned_startup_program):
input = paddle.static.data(name="image", shape=[None, 3, 16, 16])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
pruned_test_program = pruned_program.clone(for_test=True)
exe.run(pruned_startup_program)
load_model(exe, pruned_program, 'model_file')
load_model(exe, pruned_test_program, 'model_file')
shapes = {
"conv1_weights": (4, 3, 3, 3),
"conv2_weights": (4, 4, 3, 3),
"conv3_weights": (8, 4, 3, 3),
"conv4_weights": (4, 8, 3, 3),
"conv5_weights": (8, 4, 3, 3),
"conv6_weights": (8, 8, 3, 3)
}
for param in pruned_program.global_block().all_parameters():
if "weights" in param.name:
print("param: {}; param shape: {}".format(param.name,
param.shape))
self.assertTrue(param.shape == shapes[param.name])
for param in pruned_test_program.global_block().all_parameters():
if "weights" in param.name:
print("param: {}; param shape: {}".format(param.name,
param.shape))
self.assertTrue(param.shape == shapes[param.name])
if __name__ == '__main__':
unittest.main()