forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_group_param.py
68 lines (61 loc) · 2.76 KB
/
test_group_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle
from layers import conv_bn_layer
from paddleslim.prune import StaticPruningCollections
from static_case import StaticCase
class TestPrune(StaticCase):
def test_prune(self):
main_program = paddle.static.Program()
startup_program = paddle.static.Program()
# X X O X O
# conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
# | ^ | ^
# |____________| |____________________|
#
# X: prune output channels
# O: prune input channels
with paddle.static.program_guard(main_program, startup_program):
input = paddle.static.data(name="image", shape=[None, 3, 16, 16])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
collections = StaticPruningCollections(
["conv1_weights", "conv2_weights", "conv3_weights", "dummy"],
main_program)
params = set([
param.name for param in main_program.all_parameters()
if "weights" in param.name
])
expected_groups = [[('conv1_weights', 0), ('conv2_weights', 1),
('conv2_weights', 0), ('conv3_weights', 1),
('conv4_weights', 0), ('conv5_weights', 1)],
[('conv3_weights', 0), ('conv4_weights', 1)]]
self.assertTrue(len(collections._collections) == len(expected_groups))
for _collected, _expected in zip(collections, expected_groups):
for _info in _collected.all_pruning_details():
_name = _info.name
_axis = _info.axis
if _name in params:
self.assertTrue((_name, _axis) in _expected)
if __name__ == '__main__':
unittest.main()