-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgen_onto_protein_data.py
295 lines (234 loc) · 10.4 KB
/
gen_onto_protein_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import numpy as np
import lmdb
import pickle as pkl
from Bio import SwissProt
from goatools.obo_parser import GODag, GOTerm
NODE_TYPE_MAPPING = {
'biological_process': 'Process',
'molecular_function': 'Function',
'cellular_component': 'Component'
}
def create_goa_triplet(fin_path, fout_path, protein_path):
print('Loading gene ontology annotation...')
cnt = 0
protein_set = set()
goa_set = set()
valid_protein_set = set()
part_in_go_term_set = set()
# load swissprot protein
with open(protein_path, 'r') as handle:
for rec in handle.readlines():
protein_set.add(rec.rstrip('\n').split()[0])
print('A0A023PZB3' in protein_set)
if not os.path.exists(fout_path):
os.mkdir(fout_path)
out_component_handle = open(os.path.join(fout_path, 'component.txt'), 'w')
out_function_handle = open(os.path.join(fout_path, 'function.txt'), 'w')
out_process_handle = open(os.path.join(fout_path, 'process.txt'), 'w')
for idx, line in enumerate(open(fin_path, 'r')):
# skip annotation info.
if idx < 9:
continue
# key field:
# index 0: DB
# index 1: DB object id (head entity)
# index 3: Qualifier (relation)
# index 4: GO id (tail entity)
# index 6: evidence code
# index 8: aspect (node type, e.g. {C, F, P})
# index 11: DB object type (e.g. protein)
rec = line.rstrip("\n").split("\t")
if rec[0] != 'UniProtKB' or rec[11] != 'protein':
continue
if rec[1] in protein_set:
goa = f'{rec[1]}_{rec[3]}_{rec[4]}'
if goa not in goa_set:
goa_set.add(goa)
valid_protein_set.add(rec[1])
part_in_go_term_set.add(rec[4])
if rec[8] == 'C':
out_component_handle.write(f'{rec[1]} {rec[3]} {rec[4]} {rec[6]}\n')
elif rec[8] == 'F':
out_function_handle.write(f'{rec[1]} {rec[3]} {rec[4]} {rec[6]}\n')
elif rec[8] == 'P':
out_process_handle.write(f'{rec[1]} {rec[3]} {rec[4]} {rec[6]}\n')
else:
raise Exception('the ontology type not supported.')
if idx % 100000 == 0:
print(f'the number of valid protein: {len(valid_protein_set)}')
print(f'the number of involved go term: {len(part_in_go_term_set)}')
print('-----------------------------------------------------')
out_component_handle.close()
out_function_handle.close()
out_process_handle.close()
print('Finished!')
print(f'the number of valid protein: {len(valid_protein_set)}')
print(f'the number of involved go term: {len(part_in_go_term_set)}')
def create_uniprot_data(fin_path, fout_path):
total_protein = 0
valid_protein_list = []
with open(fout_path, 'w') as out_handle:
with open(fin_path, 'r') as in_handle:
for rec in SwissProt.parse(in_handle):
if rec.sequence is not None:
out_handle.write(f"{rec.accessions[0]} {rec.sequence}\n")
print('Finished!')
def create_go_data(fin_path, fout_graph_path, fout_detail_path, fout_leaf_path):
print('Loading gene ontology term...')
go_graph_handle = open(fout_graph_path, 'w')
go_detail_handle = open(fout_detail_path, 'w')
go_leaf_handle = open(fout_leaf_path, 'w')
godag = GODag(fin_path, optional_attrs={'relationship'})
go_onto_set = set()
leaf_go_set = set()
max_level = -1
for go_id, go_term in godag.items():
# deal current node's parents ('is_a')
cur_node = go_id
cur_node_type = NODE_TYPE_MAPPING[go_term.namespace]
cur_node_name = go_term.name
cur_node_desc = f'{cur_node_name}: {go_term.definition}'
cur_node_level = go_term.level
go_detail_handle.write(f'{cur_node}\t{cur_node_type}\t{cur_node_desc}\t{cur_node_level}\n')
if cur_node_level > max_level:
max_level = cur_node_level
for parent in go_term.parents:
oth_node= parent.id
oth_node_type = NODE_TYPE_MAPPING[parent.namespace]
# remove those node existing children nodes.
if oth_node in leaf_go_set:
leaf_go_set.remove(oth_node)
triplet = f'{cur_node}-is_a-{oth_node}'
if triplet not in go_onto_set:
go_graph_handle.write(f'{cur_node} is_a {oth_node}\n')
go_onto_set.add(triplet)
# deal current node' children nodes (is_a).
for child in go_term.children:
oth_node = child.id
oth_node_type = NODE_TYPE_MAPPING[child.namespace]
triplet = f'{oth_node}-is_a-{cur_node}'
if triplet not in go_onto_set:
go_graph_handle.write(f'{oth_node} is_a {cur_node}\n')
go_onto_set.add(triplet)
# deal remain relationship
if go_term.relationship:
for r, terms in go_term.relationship.items():
for term in terms:
oth_node = term.id
oth_node_type = NODE_TYPE_MAPPING[term.namespace]
triplet = f'{cur_node}-{r}-{oth_node}'
if triplet not in go_onto_set:
go_graph_handle.write(f'{cur_node} {r} {oth_node}\n')
go_onto_set.add(triplet)
# temporarily saving current node which don't exist children nodes.
if len(go_term.children) == 0:
leaf_go_set.add(cur_node)
for go_term in leaf_go_set:
go_leaf_handle.write(f'{go_term}\n')
go_graph_handle.close()
go_detail_handle.close()
go_leaf_handle.close()
def create_onto_protein_data(
fin_go_graph_path,
fin_go_detail_path,
fin_goa_path,
fin_protein_seq_path,
fout_path
):
if not os.path.exists(fout_path):
os.mkdir(fout_path)
# TODO: dataset split: transductive and inductive
go2id = {}
protein2id = {}
relation2id = {}
cur_relation_idx = 0
go2id_handle = open(os.path.join(fout_path, 'go2id.txt'), 'w')
protein2id_handle = open(os.path.join(fout_path, 'protein2id.txt'), 'w')
relation2id_handle = open(os.path.join(fout_path, 'relation2id.txt'), 'w')
go_def_handle = open(os.path.join(fout_path, 'go_def.txt'), 'w')
go_type_handle = open(os.path.join(fout_path, 'go_type.txt'), 'w')
protein_seq_handle = open(os.path.join(fout_path, 'protein_seq.txt'), 'w')
go_go_triplet_handle = open(os.path.join(fout_path, 'go_go_triplet.txt'), 'w')
protein_go_triplet_handle = open(os.path.join(fout_path, 'protein_go_triplet.txt'), 'w')
with open(fin_go_detail_path, 'r') as f:
for idx, line in enumerate(f.readlines()):
rec = line.rstrip('\n').split('\t')
go_term_id = rec[0]
go_term_def = rec[2]
go_term_type = rec[1]
go2id[go_term_id] = idx
go_def_handle.write(f'{go_term_def}\n')
go_type_handle.write(f'{go_term_type}\n')
for go, id in go2id.items():
go2id_handle.write(f'{go} {id}\n')
go_def_handle.close()
go_type_handle.close()
go2id_handle.close()
with open(fin_go_graph_path, 'r') as f:
for idx, line in enumerate(f.readlines()):
rec = line.rstrip('\n').split()
head, relation, tail = rec
if relation not in relation2id:
relation2id[relation] = cur_relation_idx
cur_relation_idx += 1
head_id = go2id[head]
relation_id = relation2id[relation]
tail_id = go2id[tail]
go_go_triplet_handle.write(f'{head_id} {relation_id} {tail_id}\n')
go_go_triplet_handle.close()
with open(fin_protein_seq_path, 'r') as f:
db_env = lmdb.open(os.path.join(fout_path, 'swiss_seq'), map_size=1099511627776)
update_freq = 1e-5
txn = db_env.begin(write=True)
for idx, line in enumerate(f.readlines()):
rec = line.rstrip('\n').split()
protein, seq = rec
protein2id[protein] = idx
protein_seq_handle.write(f'{seq}\n')
# save protein sequence to lmdb
txn.put(str(idx).encode(), pkl.dumps(seq))
if idx % update_freq == 0:
txn.commit()
txn = db_env.begin(write=True)
txn.put('num_examples'.encode(), pkl.dumps(idx+1))
txn.commit()
db_env.close()
for protein, id in protein2id.items():
protein2id_handle.write(f'{protein} {id}\n')
protein_seq_handle.close()
protein2id_handle.close()
for type in ['component.txt', 'function.txt', 'process.txt']:
with open(os.path.join(fin_goa_path, type)) as f:
for line in f.readlines():
rec = line.rstrip('\n').split()
protein, relation, go, _ = rec
if relation not in relation2id:
relation2id[relation] = cur_relation_idx
cur_relation_idx += 1
protein_id = protein2id[protein]
relation_id = relation2id[relation]
# filter triplet which go term don't exist in go.obo
if go in go2id:
go_id = go2id[go]
protein_go_triplet_handle.write(f'{protein_id} {relation_id} {go_id}\n')
for relation, id in relation2id.items():
relation2id_handle.write(f'{relation} {id}\n')
protein_go_triplet_handle.close()
relation2id_handle.close()
if __name__ == '__main__':
create_uniprot_data('data/original_data/uniprot_sprot.dat', 'data/onto_protein_data/protein_seq_map.txt')
create_goa_triplet('data/original_data/goa_uniprot_all.gaf', 'data/onto_protein_data/protein_go_triplet', 'data/onto_protein_data/protein_seq_map.txt')
create_go_data(
fin_path='data/original_data/go.obo',
fout_graph_path='data/onto_protein_data/go_graph.txt',
fout_detail_path='data/onto_protein_data/go_detail.txt',
fout_leaf_path='data/onto_protein_data/go_leaf.txt'
)
create_onto_protein_data(
fin_go_graph_path='data/onto_protein_data/go_graph.txt',
fin_go_detail_path='data/onto_protein_data/go_detail.txt',
fin_goa_path='data/onto_protein_data/protein_go_triplet',
fin_protein_seq_path='data/onto_protein_data/protein_seq_map.txt',
fout_path='data/pretrain_data'
)