-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data.py
265 lines (201 loc) · 10.7 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import json
import pickle
from tqdm import tqdm
import pandas as pd
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1,2,3"
from src.dataset import MultimodalDataset
from transformers import BertTokenizer, AutoModel
import torch
data_dir = 'data/MMCaD'
with open('data/train_idx.json', 'r') as f:
train_indexes = json.load(f)
with open('data/val_idx.json', 'r') as f:
val_indexes = json.load(f)
with open('data/test_idx.json', 'r') as f:
test_indexes = json.load(f)
with open('data/data_identifiers.json', 'r') as f:
data_indexes = json.load(f)
def category2id(category_set):
category_labels = {}
category_count = 0.
for element in category_set:
category_labels[element] = category_count
category_count += 1
return category_labels
def get_parent_icd(code):
code = str(code)
try:
# icd code start with number
code0 = int(code[0])
return code[:3]
except:
# return code
if str(code[0]) == 'E':
return code[:3]
elif str(code[0]) == 'V':
return code[:3]
print('ICD code {0} does not start with number, "E" or "V"'.format(code))
return code
def get_truncate_icd_diagnosis_cxr():
with open('data/gem/2015_I10gem.txt', 'r') as f:
lines = [line.rstrip() for line in f]
lines = [line.split() for line in lines]
icd_10 = []
icd_9 = []
for line in lines:
icd_10.append(line[0])
icd_9.append(line[1])
assert len(icd_10) == len(icd_9)
icd_gem_10to9 = pd.DataFrame({'icd_10': icd_10, 'icd_9': icd_9})
all_icd_code_9_list=[]
indirect_conversions=[]
for idx, values in tqdm(data_indexes.items()):
subject_id, hamd_id, stay_id = values
# load 'hosp_ed_cxr_data.csv'
current_data_path = os.path.join(data_dir, subject_id, hamd_id, stay_id)
hosp_ed_cxr_data = pd.read_csv(os.path.join(current_data_path, 'hosp_ed_cxr_data.csv'))
# load diagnosis label
current_label =pd.read_csv(os.path.join(current_data_path, 'icd_diagnosis.csv'))
# convert icd10 to icd9
icd_9_diagnosis_list = []
for i in range(len(current_label.icd_code.values)):
if current_label.icd_version.values[i] == 9:
icd_9_diagnosis_list.append(str(current_label.icd_code.values[i]))
else:
try:
icd_9_diagnosis = \
icd_gem_10to9[icd_gem_10to9['icd_10'] == current_label.icd_code.values[i]].icd_9.values[0]
icd_9_diagnosis_list.append(str(icd_9_diagnosis))
except:
# rarely, there is no conversion from icd10 to icd9, disgard these icd_codes
indirect_conversions.append(str(current_label.icd_code.values[i]))
all_icd_code_9_list += icd_9_diagnosis_list
print('number of indirect_conversions:', len(set(indirect_conversions)))
print(len(set(all_icd_code_9_list)))
with open('data/indirect_conversions.json', 'w') as f:
json.dump(indirect_conversions, f)
with open('data/all_icd_code9_list.json', 'w') as f:
json.dump(all_icd_code_9_list, f)
# get_truncate_icd_diagnosis_cxr()
def get_unique_labevent_test_id():
d_labevent_dict = pd.read_csv('data/mimiciv/hosp/d_labitems.csv.gz', compression='gzip')
with open('data/unique_labevent_item_id.json', 'w') as f:
json.dump(list(d_labevent_dict['itemid'].values.astype(str)), f)
print(type(d_labevent_dict.loc[0, 'itemid']))
print(d_labevent_dict.loc[0, 'itemid'])
print(d_labevent_dict.itemid.min())
print(d_labevent_dict[d_labevent_dict['itemid'] == 50801])
def get_unique_category_ids():
print('prepraring unique_category_ids')
micro_spec_itemid_category_ids = set()
micro_test_itemid_category_ids = set()
micro_org_itemid_category_ids = set()
micro_ab_itemid_category_ids = set()
micro_dilution_comparison_category_ids = set()
patient_category_ids = set()
triage_category_ids = set()
for idx, values in tqdm(data_indexes.items()):
subject_id, hamd_id, stay_id = values
current_data_path = os.path.join(data_dir, subject_id, hamd_id, stay_id)
# with open(os.path.join(current_data_path, 'input_embeddings.pkl'), 'rb') as f:
# current_input = pickle.load(f)
hosp_ed_cxr_df = pd.read_csv(os.path.join(current_data_path, 'hosp_ed_cxr_data.csv'))
try:
microbiologyevents_df = pd.read_csv(os.path.join(current_data_path, 'microbiologyevents.csv'))
except:
microbiologyevents_df = pd.DataFrame()
if len(microbiologyevents_df) > 0:
microbiologyevents_df = microbiologyevents_df.fillna(-100)
micro_spec_itemid_category_ids = micro_spec_itemid_category_ids | set(
list(microbiologyevents_df['spec_itemid']))
micro_test_itemid_category_ids = micro_test_itemid_category_ids | set(
list(microbiologyevents_df['test_itemid']))
micro_org_itemid_category_ids = micro_org_itemid_category_ids | set(list(microbiologyevents_df['org_itemid']))
micro_ab_itemid_category_ids = micro_ab_itemid_category_ids | set(list(microbiologyevents_df['ab_itemid']))
micro_dilution_comparison_category_ids = micro_dilution_comparison_category_ids | set(
list(microbiologyevents_df['dilution_comparison']))
patient_data = hosp_ed_cxr_df.loc[0,['gender','race','arrival_transport','anchor_age']].fillna(-100.0)
patient_category_ids = patient_category_ids | set([patient_data['gender']])
patient_category_ids = patient_category_ids | set([patient_data['race']])
patient_category_ids = patient_category_ids | set([patient_data['arrival_transport']])
triage_data = hosp_ed_cxr_df.loc[0,['ed_temperature','ed_heartrate','ed_resprate','ed_o2sat','ed_sbp','ed_dbp','ed_acuity','ed_pain']].fillna(-100.0)
triage_category_ids = triage_category_ids | set([triage_data['ed_pain']])
triage_category_ids = triage_category_ids | set([triage_data['ed_acuity']])
micro_spec_itemid_category_ids = category2id(micro_spec_itemid_category_ids)
micro_test_itemid_category_ids = category2id(micro_test_itemid_category_ids)
micro_org_itemid_category_ids = category2id(micro_org_itemid_category_ids)
micro_ab_itemid_category_ids = category2id(micro_ab_itemid_category_ids)
micro_dilution_comparison_category_ids = category2id(micro_dilution_comparison_category_ids)
patient_category_ids = category2id(patient_category_ids)
triage_category_ids = category2id(triage_category_ids)
with open('data/micro_spec_itemid_category_ids.json', 'w') as f:
json.dump(micro_spec_itemid_category_ids, f)
with open('data/micro_test_itemid_category_ids.json', 'w') as f:
json.dump(micro_test_itemid_category_ids, f)
with open('data/micro_org_itemid_category_ids.json', 'w') as f:
json.dump(micro_org_itemid_category_ids, f)
with open('data/micro_ab_itemid_category_ids.json', 'w') as f:
json.dump(micro_ab_itemid_category_ids, f)
with open('data/micro_dilution_comparison_category_ids.json', 'w') as f:
json.dump(micro_dilution_comparison_category_ids, f)
with open('data/patient_category_ids.json', 'w') as f:
json.dump(patient_category_ids, f)
with open('data/triage_category_ids.json', 'w') as f:
json.dump(triage_category_ids, f)
def get_numerical_variable_stats():
labevent_values = []
microbiologyevent_values = []
age = []
triage = []
for idx, values in tqdm(data_indexes.items()):
subject_id, hamd_id, stay_id = values
current_data_path = os.path.join(data_dir, subject_id, hamd_id, stay_id)
try:
hosp_ed_cxr_df = pd.read_csv(os.path.join(current_data_path, 'hosp_ed_cxr_data.csv'))
except:
# file does not exist, disgard
continue
labevent_df = pd.read_csv(os.path.join(current_data_path, 'labevents.csv'))
try:
microbiologyevent_df = pd.read_csv(os.path.join(current_data_path, 'microbiologyevents.csv'))
except:
microbiologyevent_df = pd.DataFrame()
if len(labevent_df) > 0:
labevent_values += list(labevent_df['valuenum'].dropna().values)
if len(microbiologyevent_df) > 0:
microbiologyevent_values += list(microbiologyevent_df['dilution_value'].dropna().values)
age += [hosp_ed_cxr_df.anchor_age.values[0]]
triage.append(list(
hosp_ed_cxr_df.loc[0, ['ed_temperature', 'ed_heartrate', 'ed_resprate', 'ed_o2sat', 'ed_sbp', 'ed_dbp']]))
with open('numerical_variable_stats.pkl', 'wb') as f:
pickle.dump({'labevent_values': labevent_values,
'microbiologyevent_values': microbiologyevent_values,
'age': age,
'triage': triage}, f)
# get_unique_diagnosis_with_abnormal_cxr()
get_unique_labevent_test_id()
get_unique_category_ids()
# get_numerical_variable_stats()
def prepare_discharge_summary_embeddings(data_split_idx_path, split_type='train'):
tokenizer = BertTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
model = AutoModel.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
model = torch.nn.DataParallel(model)
model.cuda()
model.eval()
with open(data_split_idx_path, 'r') as f:
data_split_idx = json.load(f)
discharge_summary_embeddings = {}
for idx, values in tqdm(data_split_idx.items()):
subject_id, hamd_id, stay_id = values
current_data_path = os.path.join(data_dir, subject_id, hamd_id, stay_id)
hosp_ed_cxr_df = pd.read_csv(os.path.join(current_data_path, 'hosp_ed_cxr_data.csv'))
discharge_summary = hosp_ed_cxr_df.loc[0, 'discharge_note_text']
discharge_summary_tokens = tokenizer(discharge_summary, return_tensors='pt', padding='max_length',
truncation=True, max_length=512)
discharge_summary_tokens = {key: values.cuda() for key, values in discharge_summary_tokens.items()}
outputs = model(**discharge_summary_tokens)
pooler_output = outputs.pooler_output
discharge_summary_embeddings[idx] = pooler_output.detach().cpu()
with open(os.path.join('data', split_type, 'discharge_summary_embeddings.pkl'), 'wb') as f:
pickle.dump(discharge_summary_embeddings, f)