-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathlanguage_models.py
368 lines (312 loc) · 12.5 KB
/
language_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import openai
import anthropic
import os
import time
import torch
import gc
from typing import Dict, List
import google.generativeai as genai
import urllib3
from copy import deepcopy
from config import LLAMA_API_LINK, VICUNA_API_LINK
class LanguageModel():
def __init__(self, model_name):
self.model_name = model_name
def batched_generate(self, prompts_list: List, max_n_tokens: int, temperature: float):
"""
Generates responses for a batch of prompts using a language model.
"""
raise NotImplementedError
class HuggingFace(LanguageModel):
def __init__(self,model_name, model, tokenizer):
self.model_name = model_name
self.model = model
self.tokenizer = tokenizer
self.eos_token_ids = [self.tokenizer.eos_token_id]
def batched_generate(self,
full_prompts_list,
max_n_tokens: int,
temperature: float,
top_p: float = 1.0,):
inputs = self.tokenizer(full_prompts_list, return_tensors='pt', padding=True)
inputs = {k: v.to(self.model.device.index) for k, v in inputs.items()}
# Batch generation
if temperature > 0:
output_ids = self.model.generate(
**inputs,
max_new_tokens=max_n_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=self.eos_token_ids,
top_p=top_p,
)
else:
output_ids = self.model.generate(
**inputs,
max_new_tokens=max_n_tokens,
do_sample=False,
eos_token_id=self.eos_token_ids,
top_p=1,
temperature=1, # To prevent warning messages
)
# If the model is not an encoder-decoder type, slice off the input tokens
if not self.model.config.is_encoder_decoder:
output_ids = output_ids[:, inputs["input_ids"].shape[1]:]
# Batch decoding
outputs_list = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
for key in inputs:
inputs[key].to('cpu')
output_ids.to('cpu')
del inputs, output_ids
gc.collect()
torch.cuda.empty_cache()
return outputs_list
def extend_eos_tokens(self):
# Add closing braces for Vicuna/Llama eos when using attacker model
self.eos_token_ids.extend([
self.tokenizer.encode("}")[1],
29913,
9092,
16675])
class APIModel(LanguageModel):
API_HOST_LINK = "ADD_LINK"
API_RETRY_SLEEP = 10
API_ERROR_OUTPUT = "$ERROR$"
API_QUERY_SLEEP = 0.5
API_MAX_RETRY = 20
API_TIMEOUT = 100
MODEL_API_KEY = os.getenv("MODEL_API_KEY")
API_HOST_LINK = ''
def generate(self, conv: List[Dict],
max_n_tokens: int,
temperature: float,
top_p: float):
'''
Args:
conv: List of dictionaries, OpenAI API format
max_n_tokens: int, max number of tokens to generate
temperature: float, temperature for sampling
top_p: float, top p for sampling
Returns:
str: generated response
'''
output = self.API_ERROR_OUTPUT
for _ in range(self.API_MAX_RETRY):
try:
# Batch generation
if temperature > 0:
# Attack model
json = {
"top_p": top_p,
"num_beams": 1,
"temperature": temperature,
"do_sample": True,
"prompt": '',
"max_new_tokens": max_n_tokens,
"system_prompt": conv,
}
else:
# Target model
json = {
"top_p": 1,
"num_beams": 1,
"temperature": 1, # To prevent warning messages
"do_sample": False,
"prompt": '',
"max_new_tokens": max_n_tokens,
"system_prompt": conv,
}
# Do not use extra end-of-string tokens in target mode
if 'llama' in self.model_name:
json['extra_eos_tokens'] = 0
if 'llama' in self.model_name:
# No system prompt for the Llama model
assert json['prompt'] == ''
json['prompt'] = deepcopy(json['system_prompt'])
del json['system_prompt']
resp = urllib3.request(
"POST",
self.API_HOST_LINK,
headers={"Authorization": f"Api-Key {self.MODEL_API_KEY}"},
timeout=urllib3.Timeout(self.API_TIMEOUT),
json=json,
)
resp_json = resp.json()
if 'vicuna' in self.model_name:
if 'error' in resp_json:
print(self.API_ERROR_OUTPUT)
output = resp_json['output']
else:
output = resp_json
if type(output) == type([]):
output = output[0]
break
except Exception as e:
print('exception!', type(e), e)
time.sleep(self.API_RETRY_SLEEP)
time.sleep(self.API_QUERY_SLEEP)
return output
def batched_generate(self,
convs_list: List[List[Dict]],
max_n_tokens: int,
temperature: float,
top_p: float = 1.0,):
return [self.generate(conv, max_n_tokens, temperature, top_p) for conv in convs_list]
class APIModelLlama7B(APIModel):
API_HOST_LINK = LLAMA_API_LINK
MODEL_API_KEY = os.getenv("LLAMA_API_KEY")
class APIModelVicuna13B(APIModel):
API_HOST_LINK = VICUNA_API_LINK
MODEL_API_KEY = os.getenv("VICUNA_API_KEY")
class GPT(LanguageModel):
API_RETRY_SLEEP = 10
API_ERROR_OUTPUT = "$ERROR$"
API_QUERY_SLEEP = 0.5
API_MAX_RETRY = 20
API_TIMEOUT = 20
openai.api_key = os.getenv("OPENAI_API_KEY")
def generate(self, conv: List[Dict],
max_n_tokens: int,
temperature: float,
top_p: float):
'''
Args:
conv: List of dictionaries, OpenAI API format
max_n_tokens: int, max number of tokens to generate
temperature: float, temperature for sampling
top_p: float, top p for sampling
Returns:
str: generated response
'''
output = self.API_ERROR_OUTPUT
for _ in range(self.API_MAX_RETRY):
try:
response = openai.ChatCompletion.create(
model = self.model_name,
messages = conv,
max_tokens = max_n_tokens,
temperature = temperature,
top_p = top_p,
request_timeout = self.API_TIMEOUT,
)
output = response["choices"][0]["message"]["content"]
break
except Exception as e:
print(type(e), e)
time.sleep(self.API_RETRY_SLEEP)
time.sleep(self.API_QUERY_SLEEP)
return output
def batched_generate(self,
convs_list: List[List[Dict]],
max_n_tokens: int,
temperature: float,
top_p: float = 1.0,):
return [self.generate(conv, max_n_tokens, temperature, top_p) for conv in convs_list]
class PaLM():
API_RETRY_SLEEP = 10
API_ERROR_OUTPUT = "$ERROR$"
API_QUERY_SLEEP = 1
API_MAX_RETRY = 5
API_TIMEOUT = 20
default_output = "I'm sorry, but I cannot assist with that request."
API_KEY = os.getenv("PALM_API_KEY")
def __init__(self, model_name) -> None:
self.model_name = model_name
genai.configure(api_key=self.API_KEY)
def generate(self, conv: List,
max_n_tokens: int,
temperature: float,
top_p: float):
'''
Args:
conv: List of dictionaries,
max_n_tokens: int, max number of tokens to generate
temperature: float, temperature for sampling
top_p: float, top p for sampling
Returns:
str: generated response
'''
output = self.API_ERROR_OUTPUT
for _ in range(self.API_MAX_RETRY):
try:
completion = genai.chat(
messages=conv,
temperature=temperature,
top_p=top_p
)
output = completion.last
if output is None:
# If PaLM refuses to output and returns None, we replace it with a default output
output = self.default_output
else:
# Use this approximation since PaLM does not allow
# to specify max_tokens. Each token is approximately 4 characters.
output = output[:(max_n_tokens*4)]
break
except Exception as e:
print(type(e), e)
time.sleep(self.API_RETRY_SLEEP)
time.sleep(self.API_QUERY_SLEEP)
return output
def batched_generate(self,
convs_list: List[List[Dict]],
max_n_tokens: int,
temperature: float,
top_p: float = 1.0,):
return [self.generate(conv, max_n_tokens, temperature, top_p) for conv in convs_list]
class GeminiPro():
API_RETRY_SLEEP = 10
API_ERROR_OUTPUT = "$ERROR$"
API_QUERY_SLEEP = 1
API_MAX_RETRY = 5
API_TIMEOUT = 20
default_output = "I'm sorry, but I cannot assist with that request."
API_KEY = os.getenv("PALM_API_KEY")
def __init__(self, model_name) -> None:
self.model_name = model_name
genai.configure(api_key=self.API_KEY)
def generate(self, conv: List,
max_n_tokens: int,
temperature: float,
top_p: float):
'''
Args:
conv: List of dictionaries,
max_n_tokens: int, max number of tokens to generate
temperature: float, temperature for sampling
top_p: float, top p for sampling
Returns:
str: generated response
'''
output = self.API_ERROR_OUTPUT
for _ in range(self.API_MAX_RETRY):
try:
model = genai.GenerativeModel(self.model_name)
output = model.generate_content(
contents = conv,
generation_config = genai.GenerationConfig(
candidate_count = 1,
temperature = temperature,
top_p = top_p,
max_output_tokens=max_n_tokens,
)
)
if output is None:
# If PaLM refuses to output and returns None, we replace it with a default output
output = self.default_output
else:
# Use this approximation since PaLM does not allow
# to specify max_tokens. Each token is approximately 4 characters.
output = output.text
break
except Exception as e:
print(type(e), e)
time.sleep(self.API_RETRY_SLEEP)
time.sleep(self.API_QUERY_SLEEP)
return output
def batched_generate(self,
convs_list: List[List[Dict]],
max_n_tokens: int,
temperature: float,
top_p: float = 1.0,):
return [self.generate(conv, max_n_tokens, temperature, top_p) for conv in convs_list]