-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrangeGate.Rd
164 lines (125 loc) · 5.86 KB
/
rangeGate.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
\name{rangeGate}
\alias{rangeGate}
\alias{rangeFilter}
\alias{rangeFilter-class}
\alias{\%in\%,flowFrame,rangeFilter-method}
\alias{oneDGate}
\title{ Find most likely separation between positive and negative
populations in 1D }
\description{
The function tries to find a reasonable split point between the two
hypothetical cell populations "positive" and "negative".
}
\usage{
rangeGate(x, stain, alpha="min", sd=2, plot=FALSE, borderQuant=0.1,
absolute=TRUE, filterId="defaultRectangleGate", positive=TRUE,
refLine=NULL, simple = FALSE,...)
rangeFilter(stain, alpha="min", sd=2, borderQuant=0.1,
filterId="defaultRangeFilter")
}
\arguments{
\item{x}{ A \code{\link[flowCore:flowSet-class]{flowSet}} or
\code{\link[flowCore:flowFrame-class]{flowFrame}}. }
\item{stain}{ A character scalar giving the flow parameter for which
to compute the separation. }
\item{alpha}{ A tuning parameter that controls the location of the
split point between the two populations. This has to be a numeric in
the range \code{[0,1]}, where values closer to 0 will shift the
split point closer to the negative population and values closer to 1
will shift towards the positive population. Additionally, the value
of \code{alpha} can be \code{"min"}, in which case the split point
will be selected as the area of lowest local density between the two
populations. }
\item{sd}{For the case where there is only a single population, the
algorithm falls back to esitmating the mode of this population and a
robust measure of the variance of it distribution. The \code{sd}
tuning parameter controls how far away from the mode the split point
is set. }
\item{plot}{ Create a plot of the results of the computation. }
\item{borderQuant}{Usualy the instrument is set up in a way that the
positive population is somewhere on the high end of the measurement
range and the negative population is on the low end. This parameter
allows to disregard populations with mean values in the extreme
quantiles of the data range. It's value should be in the range
\code{[0,1]}. }
\item{absolute}{Logical controling whether to classify a population
(positive or negative) relative to the theoretical measurment range
of the instrument or the actual range of the data. This can be set
to \code{TRUE} if the alignment of the measurment range is not
optimal and the bulk of the data is on one end of the theoretical
range.}
\item{filterId}{ Character, the name assigned to the resulting
filter. }
\item{positive}{ Create a range gate that includes the positive
(\code{TRUE}) or the negative (\code{FALSE}) population. }
\item{refLine}{Either \code{NULL} or a numeric of lenth 1. If
\code{NULL}, this parameter is ignored. When it is set to a numeric, the
minor sub-population (if any) below this reference line
will be igored while determining the separator between positive and
negative. }
\item{simple}{ \code{logical} scalar indicating whether to use a simple peak finding version of density1d algorithm.
}
\item{\dots}{ Further arguments. }
}
\details{
The algorithm first tries to identify high density regions in the
data. If the input is a \code{flowSet}, density regions will be
computed on the collapsed data, hence it should have been normalized
before (see \code{\link{warpSet}} for one possible normalization
technique). The high density regions are then clasified as positive
and negative populations, based on their mean value in the theoretical
(or absolute if argument \code{absolute=TRUE}) measurement range. In
case there are only two high-density regions the lower one is usually
clasified as the negative populations, however the heuristics in the
algorithm will force the classification towards a positive population
if the mean value is already very high. The \code{absolute} and
\code{borderQuant} arguments can be used to control this
behaviour. The split point between populations will be drawn at the
value of mimimum local density between the two populations, or, if the
\code{alpha} argument is used, somewhere between the two populations
where the value of alpha forces the point to be closer to the negative
(\code{0 - 0.5}) or closer to the positive population (\code{0.5 -
1}).
If there is only a single high-density region, the algorithm will fall
back to estimating the mode of the distribution
(\code{\link[MASS]{hubers}}) and a robust measure of it's variance
and, in combination with the \code{sd} argument, set the split point
somewhere in the right or left tail, depending on the classification
of the region.
For more than two populations, the algorithm will still classify each
population into positive and negative and compute the split point
between those clusteres, similar to the two population case.
The \code{rangeFilter} class and constructor provide the means to
treat \code{rangeGate} as regular \code{flowCore} filters.
}
\section{Methods}{
\describe{
\item{\%in\%}{\code{signature(x =
"flowFrame", table = "rangeFilter")}: the work horse for doing the
actual filtering. Internally, this simply calls the \code{rangeGate}
function. }
}
}
\value{
A range gate, more explicitely an object of class
\code{\link[flowCore]{rectangleGate}}.
}
\author{ Florian Hahne, Kyongryun Lee }
\seealso{
\code{\link{warpSet}}, \code{\link{rangeGate}},
\code{\link[flowCore]{rectangleGate}}
}
\examples{
library(flowCore)
data(GvHD)
dat <- GvHD[pData(GvHD)$Patient==10]
dat <- transform(dat, "FL4-H"=asinh(`FL4-H`), "FL3-H"=asinh(`FL3-H`))
rg <- rangeGate(dat, "FL4-H", plot=TRUE)
rg
split(dat, rg)
## Test rangeGate when settting refLine=0; it does not do anything since
## there is no sub-population below zero.
rangeGate(dat, "FL4-H", plot=FALSE, refLine=0)
rf <- rangeFilter("FL4-H")
filter(dat, rf)
}