forked from X-PLUG/mPLUG-Owl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_it_wo_lora.sh
86 lines (73 loc) · 2.12 KB
/
train_it_wo_lora.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/bin/bash
DIR=`pwd`
DATETIME=`date +'date_%y-%m-%d_time_%H-%M-%S'`
if [ $MASTER_ADDR ];then
echo $MASTER_ADDR
echo $MASTER_PORT
echo $WORLD_SIZE
echo $RANK
else
MASTER_ADDR=127.0.0.1
MASTER_PORT=2$(($RANDOM % 10))$(($RANDOM % 10))15
WORLD_SIZE=1
RANK=0
fi
DISTRIBUTED_ARGS="--nproc_per_node 8 \
--nnodes ${WORLD_SIZE} \
--node_rank ${RANK} \
--master_addr ${MASTER_ADDR} \
--master_port ${MASTER_PORT}"
EXP_NAME=sft_v0.1
SAVE_NAME=sft_v0.1_iter50000_lora_fix_v1_full_finetune
SAVE_PATH="./output/sft/${SAVE_NAME}/"
TENSORBOARD_PATH="./tensorboard/sft/${SAVE_NAME}/"
max_length=1024
micro_batch_size=4
global_batch_size=256
# train_iters = total_data * train_epochs // global_batch_size
# 361481 * 3 / 256 = 4236
train_epochs=3
train_iters=4236
# lr_warmup_iters=`expr $train_iters \/ 100`
lr_warmup_iters=50
lr_decay_iters=`expr $train_iters - $lr_warmup_iters`
eval_iter=50
eval_interval=50
save_interval=250
mkdir -p ${SAVE_PATH}
mkdir -p ${TENSORBOARD_PATH}
options=" \
--max-completion-length 0 \
--seq-length ${max_length} \
--tokenizer-type LLaMATokenizer \
--micro-batch-size ${micro_batch_size} \
--train-iters ${train_iters} \
--train-epochs ${train_epochs} \
--lr-decay-iters ${lr_decay_iters} \
--lr-warmup-iters ${lr_warmup_iters} \
--lr 2e-5 \
--min-lr 1e-6 \
--lr-decay-style cosine \
--log-interval 1 \
--eval-iters ${eval_iter} \
--eval-interval ${eval_interval} \
--vocab-file /nas-alinlp/qinghao.yqh/ckpt/tokenizer.model \
--save-interval ${save_interval} \
--save ${SAVE_PATH} \
--tensorboard-dir ${TENSORBOARD_PATH} \
--clip-grad 1.0 \
--weight-decay 0.0001 \
--no-gradient-accumulation-fusion \
--dataloader-type xgpt3 \
--adam-beta1 0.9 \
--adam-beta2 0.999 \
--num-workers 32 \
--init-method-std 0.01 \
--flash-attn \
--bf16"
multimodal_options=" \
--mm-config configs/instruction_tuning/v0.yaml \
--use-learnable-tokens \
--num-learnable-tokens 64 \
"
python -m torch.distributed.launch $DISTRIBUTED_ARGS ./train.py $@ ${options} ${multimodal_options} 2>&1 | tee ${SAVE_PATH}/train.log